Cargando…
NAD(H) recycling activity of an engineered bifunctional enzyme galactose dehydrogenase/lactate dehydrogenase
A chimeric bifunctional enzyme composing of galactose dehydrogenase (galDH; from Pseudomonas fluorescens) and lactate dehydrogenase (LDH; from Bacillus stearothermophilus) was successfully constructed. The chimeric galDH/LDH possessed dual characteristics of both galactose dehydrogenase and lactate...
Autores principales: | , , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
Ivyspring International Publisher
2006
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1415851/ https://www.ncbi.nlm.nih.gov/pubmed/16585948 |
_version_ | 1782127132436070400 |
---|---|
author | Prachayasittikul, Virapong Ljung, Sarah Isarankura-Na-Ayudhya, Chartchalerm Bülow, Leif |
author_facet | Prachayasittikul, Virapong Ljung, Sarah Isarankura-Na-Ayudhya, Chartchalerm Bülow, Leif |
author_sort | Prachayasittikul, Virapong |
collection | PubMed |
description | A chimeric bifunctional enzyme composing of galactose dehydrogenase (galDH; from Pseudomonas fluorescens) and lactate dehydrogenase (LDH; from Bacillus stearothermophilus) was successfully constructed. The chimeric galDH/LDH possessed dual characteristics of both galactose dehydrogenase and lactate dehydrogenase activities while exhibiting hexameric rearrangement with a molecular weight of approximately 400 kDa. In vitro observations showed that the chimeric enzyme was able to recycle NAD with a continuous production of lactate without any externally added NADH. Two fold higher recycling rate (0.3 mM/h) than that of the native enzyme was observed at pH values above 8.5. Proximity effects became especially pronounced during the recycling assay when diffusion hindrance was induced by polyethylene glycol. All these findings open up a high feasibility to apply the NAD(H) recycling system for metabolic engineering purposes e.g. as a model to gain a better understanding on the molecular proximity process and as the routes for synthesizing of numerous high-value-added compounds. |
format | Text |
id | pubmed-1415851 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2006 |
publisher | Ivyspring International Publisher |
record_format | MEDLINE/PubMed |
spelling | pubmed-14158512006-04-03 NAD(H) recycling activity of an engineered bifunctional enzyme galactose dehydrogenase/lactate dehydrogenase Prachayasittikul, Virapong Ljung, Sarah Isarankura-Na-Ayudhya, Chartchalerm Bülow, Leif Int J Biol Sci Research Paper A chimeric bifunctional enzyme composing of galactose dehydrogenase (galDH; from Pseudomonas fluorescens) and lactate dehydrogenase (LDH; from Bacillus stearothermophilus) was successfully constructed. The chimeric galDH/LDH possessed dual characteristics of both galactose dehydrogenase and lactate dehydrogenase activities while exhibiting hexameric rearrangement with a molecular weight of approximately 400 kDa. In vitro observations showed that the chimeric enzyme was able to recycle NAD with a continuous production of lactate without any externally added NADH. Two fold higher recycling rate (0.3 mM/h) than that of the native enzyme was observed at pH values above 8.5. Proximity effects became especially pronounced during the recycling assay when diffusion hindrance was induced by polyethylene glycol. All these findings open up a high feasibility to apply the NAD(H) recycling system for metabolic engineering purposes e.g. as a model to gain a better understanding on the molecular proximity process and as the routes for synthesizing of numerous high-value-added compounds. Ivyspring International Publisher 2006-03-01 /pmc/articles/PMC1415851/ /pubmed/16585948 Text en © Ivyspring International Publisher. This is an open access article. Reproduction is permitted for personal and noncommerical use, provided that the article is in whole, unmodified, and properly cited. |
spellingShingle | Research Paper Prachayasittikul, Virapong Ljung, Sarah Isarankura-Na-Ayudhya, Chartchalerm Bülow, Leif NAD(H) recycling activity of an engineered bifunctional enzyme galactose dehydrogenase/lactate dehydrogenase |
title | NAD(H) recycling activity of an engineered bifunctional enzyme galactose dehydrogenase/lactate dehydrogenase |
title_full | NAD(H) recycling activity of an engineered bifunctional enzyme galactose dehydrogenase/lactate dehydrogenase |
title_fullStr | NAD(H) recycling activity of an engineered bifunctional enzyme galactose dehydrogenase/lactate dehydrogenase |
title_full_unstemmed | NAD(H) recycling activity of an engineered bifunctional enzyme galactose dehydrogenase/lactate dehydrogenase |
title_short | NAD(H) recycling activity of an engineered bifunctional enzyme galactose dehydrogenase/lactate dehydrogenase |
title_sort | nad(h) recycling activity of an engineered bifunctional enzyme galactose dehydrogenase/lactate dehydrogenase |
topic | Research Paper |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1415851/ https://www.ncbi.nlm.nih.gov/pubmed/16585948 |
work_keys_str_mv | AT prachayasittikulvirapong nadhrecyclingactivityofanengineeredbifunctionalenzymegalactosedehydrogenaselactatedehydrogenase AT ljungsarah nadhrecyclingactivityofanengineeredbifunctionalenzymegalactosedehydrogenaselactatedehydrogenase AT isarankuranaayudhyachartchalerm nadhrecyclingactivityofanengineeredbifunctionalenzymegalactosedehydrogenaselactatedehydrogenase AT bulowleif nadhrecyclingactivityofanengineeredbifunctionalenzymegalactosedehydrogenaselactatedehydrogenase |