Cargando…

DR_SEQAN: a PC/Windows-based software to evaluate drug resistance using human immunodeficiency virus type 1 genotypes

BACKGROUND: Genotypic assays based on DNA sequencing of part or the whole reverse transcriptase (RT)- and protease (PR)-coding regions of the human immunodeficiency virus type 1 (HIV-1) genome have become part of the routine clinical management of HIV-infected individuals. However, the results are d...

Descripción completa

Detalles Bibliográficos
Autores principales: Garriga, César, Menéndez-Arias, Luis
Formato: Texto
Lenguaje:English
Publicado: BioMed Central 2006
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1421411/
https://www.ncbi.nlm.nih.gov/pubmed/16524459
http://dx.doi.org/10.1186/1471-2334-6-44
Descripción
Sumario:BACKGROUND: Genotypic assays based on DNA sequencing of part or the whole reverse transcriptase (RT)- and protease (PR)-coding regions of the human immunodeficiency virus type 1 (HIV-1) genome have become part of the routine clinical management of HIV-infected individuals. However, the results are difficult to interpret due to complex interactions between mutations found in viral genes. RESULTS: DR_SEQAN is a tool to analyze RT and PR sequences. The program output includes a list containing all of the amino acid changes found in the query sequence in comparison with the sequence of a wild-type HIV-1 strain. Translation of codons containing nucleotide mixtures can result in potential ambiguities or heterogeneities in the amino acid sequence. The program identifies all possible combinations of 2 or 3 amino acids that derive from translation of triplets containing nucleotide mixtures. In addition, when ambiguities affect codons relevant for drug resistance, DR_SEQAN allows the user to select the appropriate mutation to be considered by the program's drug resistance interpretation algorithm. Resistance is predicted using a rule-based algorithm, whose efficiency and accuracy has been tested with a large set of drug susceptibility data. Drug resistance predictions given by DR_SEQAN were consistent with phenotypic data and coherent with predictions provided by other publicly available algorithms. In addition, the program output provides two tables showing published drug susceptibility data and references for mutations and combinations of mutations found in the analyzed sequence. These data are retrieved from an integrated relational database, implemented in Microsoft Access, which includes two sets of non-redundant core tables (one for combinations of mutations in the PR and the other for combinations in the RT). CONCLUSION: DR_SEQAN is an easy to use off-line application that provides expert advice on HIV genotypic resistance interpretation. It is coded in Visual Basic for use in PC/Windows-based platforms. The program is freely available under the General Public License. The program (including the integrated database), documentation and a sample sequence can be downloaded from