Cargando…
Beyond logistic regression: structural equations modelling for binary variables and its application to investigating unobserved confounders
BACKGROUND: Structural equation modelling (SEM) has been increasingly used in medical statistics for solving a system of related regression equations. However, a great obstacle for its wider use has been its difficulty in handling categorical variables within the framework of generalised linear mode...
Autor principal: | Kupek, Emil |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2006
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1431551/ https://www.ncbi.nlm.nih.gov/pubmed/16539711 http://dx.doi.org/10.1186/1471-2288-6-13 |
Ejemplares similares
-
Mendelian randomization: the challenge of unobserved environmental confounds
por: Koellinger, Philipp D, et al.
Publicado: (2019) -
A novel method for controlling unobserved confounding using double confounders
por: Liu, Lu, et al.
Publicado: (2020) -
Noncollapsibility and its role in quantifying confounding bias in logistic regression
por: Schuster, Noah A., et al.
Publicado: (2021) -
Primer on binary logistic regression
por: Harris, Jenine K
Publicado: (2021) -
Correction: Primer on binary logistic regression
Publicado: (2022)