Cargando…
An unsupervised classification scheme for improving predictions of prokaryotic TIS
BACKGROUND: Although it is not difficult for state-of-the-art gene finders to identify coding regions in prokaryotic genomes, exact prediction of the corresponding translation initiation sites (TIS) is still a challenging problem. Recently a number of post-processing tools have been proposed for imp...
Autores principales: | Tech, Maike, Meinicke, Peter |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2006
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1434772/ https://www.ncbi.nlm.nih.gov/pubmed/16526950 http://dx.doi.org/10.1186/1471-2105-7-121 |
Ejemplares similares
-
Oligo kernels for datamining on biological sequences: a case study on prokaryotic translation initiation sites
por: Meinicke, Peter, et al.
Publicado: (2004) -
Computational evaluation of TIS annotation for prokaryotic genomes
por: Hu, Gang-Qing, et al.
Publicado: (2008) -
TICO: a tool for postprocessing the predictions of prokaryotic translation initiation sites
por: Tech, M., et al.
Publicado: (2006) -
Gene prediction in metagenomic fragments: A large scale machine learning approach
por: Hoff, Katharina J, et al.
Publicado: (2008) -
Orphelia: predicting genes in metagenomic sequencing reads
por: Hoff, Katharina J., et al.
Publicado: (2009)