Cargando…
Improved variance estimation of classification performance via reduction of bias caused by small sample size
BACKGROUND: Supervised learning for classification of cancer employs a set of design examples to learn how to discriminate between tumors. In practice it is crucial to confirm that the classifier is robust with good generalization performance to new examples, or at least that it performs better than...
Autores principales: | Wickenberg-Bolin, Ulrika, Göransson, Hanna, Fryknäs, Mårten, Gustafsson, Mats G, Isaksson, Anders |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2006
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1435937/ https://www.ncbi.nlm.nih.gov/pubmed/16533392 http://dx.doi.org/10.1186/1471-2105-7-127 |
Ejemplares similares
-
Network Structure and Biased Variance Estimation in Respondent Driven Sampling
por: Verdery, Ashton M., et al.
Publicado: (2015) -
Bias and sampling covariances of estimates of variance components due to maternal effects
por: Meyer, K
Publicado: (1992) -
Correction: Network Structure and Biased Variance Estimation in Respondent Driven Sampling
por: Verdery, Ashton M., et al.
Publicado: (2016) -
Variance Estimation, Design Effects, and Sample Size Calculations for Respondent-Driven Sampling
por: Salganik, Matthew J.
Publicado: (2006) -
Estimating the mean and variance from the median, range, and the size of a sample
por: Hozo, Stela Pudar, et al.
Publicado: (2005)