Cargando…
Arrhythmogenic right ventricular cardiomyopathy type 6 (ARVC6): support for the locus assignment, narrowing of the critical region and mutation screening of three candidate genes
BACKGROUND: Arrhythmogenic right ventricular cardiomyopathy (ARVC) is a heritable disorder characterized by progressive degeneration of right ventricular myocardium, arrhythmias and an increased risk of sudden death at a young age. By linkage analysis, ARVC type 6 was previously mapped to a 10.6 cM...
Autores principales: | , , , , , , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2006
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1444927/ https://www.ncbi.nlm.nih.gov/pubmed/16569242 http://dx.doi.org/10.1186/1471-2350-7-29 |
Sumario: | BACKGROUND: Arrhythmogenic right ventricular cardiomyopathy (ARVC) is a heritable disorder characterized by progressive degeneration of right ventricular myocardium, arrhythmias and an increased risk of sudden death at a young age. By linkage analysis, ARVC type 6 was previously mapped to a 10.6 cM region on chromosome 10p12-p14 in a large North American kindred. To date, the genetic defect that causes ARVC6 has not been identified. METHODS: We identified a South African family of 13 members with ARVC segregating as an autosomal dominant disorder. The diagnosis of ARVC was based on international diagnostic criteria. All available family members were genotyped with microsatellite markers at six known ARVC loci, and positional candidate gene screening was performed. RESULTS: Genetic linkage and haplotype analysis provided lod scores that are highly suggestive of linkage to the ARVC6 locus on chromosome 10p12-p14, and the narrowing of the critical region to ~2.9 Mb. Two positional candidate genes (ITG8 and FRMD4A) were screened in which defects could possibly disrupt cell-cell adhesion. A non-positional candidate gene with apoptosis inducing properties, LAMR1P6 (laminin receptor 1 pseudogene 6) was also screened. Direct sequencing of DNA from affected individuals failed to detect disease-causing mutations in the exonic sequences of the three genes investigated. CONCLUSION: The narrowing of the ARVC6 critical region may facilitate progress towards the identification of the gene that is involved in ARVC. Identification of the causative genes for ARVC will contribute to the understanding of the pathogenesis and management of this poorly understood condition. |
---|