Cargando…

The potential role of dynamic thermal analysis in breast cancer detection

BACKGROUND: It is presently well accepted that the breast exhibits a circadian rhythm reflective of its physiology. There is increasing evidence that rhythms associated with malignant cells proliferation are largely non-circadian. Cancer development appears to generate its own thermal signatures and...

Descripción completa

Detalles Bibliográficos
Autores principales: Salhab, M, Keith, LG, Laguens, M, Reeves, W, Mokbel, K
Formato: Texto
Lenguaje:English
Publicado: BioMed Central 2006
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1450295/
https://www.ncbi.nlm.nih.gov/pubmed/16584542
http://dx.doi.org/10.1186/1477-7800-3-8
_version_ 1782127391082020864
author Salhab, M
Keith, LG
Laguens, M
Reeves, W
Mokbel, K
author_facet Salhab, M
Keith, LG
Laguens, M
Reeves, W
Mokbel, K
author_sort Salhab, M
collection PubMed
description BACKGROUND: It is presently well accepted that the breast exhibits a circadian rhythm reflective of its physiology. There is increasing evidence that rhythms associated with malignant cells proliferation are largely non-circadian. Cancer development appears to generate its own thermal signatures and the complexity of these signatures may be a reflection of its degree of development. The limitations of mammography as a screening modality especially in young women with dense breasts necessitated the development of novel and more effective screening strategies with a high sensitivity and specificity. The aim of this prospective study was to evaluate the feasibility of dynamic thermal analysis (DTA) as a potential breast cancer screening tool. METHODS: 173 women undergoing mammography as part of clinical assessment of their breast symptoms were recruited prior to having a biopsy. Thermal data from the breast surface were collected every five minutes for a period of 48 hours using eight thermal sensors placed on each breast surface [First Warning System (FWS), Lifeline Biotechnologies, Florida, USA]. Thermal data were recorded by microprocessors during the test period and analysed using specially developed statistical software. Temperature points from each contra-lateral sensor are plotted against each other to form a thermal motion picture of a lesion's physiological activity. DTA interpretations [positive (abnormal thermal signature) and negative (normal thermal signature)] were compared with mammography and final histology findings. RESULTS: 118 (68%) of participating patients, were found to have breast cancer on final histology. Mammography was diagnostic of malignancy (M5) in 55 (47%), indeterminate (M3, M4) in 54 (46%) and normal/benign (M1, M2) in 9 (8%) patients. DTA data was available on 160 (92.5%) participants. Using our initial algorithm, DTA was interpreted as positive in 113 patients and negative in 47 patients. Abnormal thermal signatures were found in 76 (72%) out of 105 breast cancer patients and 37 of the 55 benign cases. Then we developed a new algorithm using multiple-layer perception and SoftMax output artificial neural networks (ANN) on a subgroup (n = 38) of recorded files. The sensitivity improved to 76% (16/21) and false positives decreased to 26% (7/27) CONCLUSION: DTA of the breast is a feasible, non invasive approach that seems to be sensitive for the detection of breast cancer. However, the test has a limited specificity that can be improved further using ANN. Prospective multi-centre trials are required to validate this promising modality as an adjunct to screening mammography especially in young women with dense breasts.
format Text
id pubmed-1450295
institution National Center for Biotechnology Information
language English
publishDate 2006
publisher BioMed Central
record_format MEDLINE/PubMed
spelling pubmed-14502952006-04-29 The potential role of dynamic thermal analysis in breast cancer detection Salhab, M Keith, LG Laguens, M Reeves, W Mokbel, K Int Semin Surg Oncol Research BACKGROUND: It is presently well accepted that the breast exhibits a circadian rhythm reflective of its physiology. There is increasing evidence that rhythms associated with malignant cells proliferation are largely non-circadian. Cancer development appears to generate its own thermal signatures and the complexity of these signatures may be a reflection of its degree of development. The limitations of mammography as a screening modality especially in young women with dense breasts necessitated the development of novel and more effective screening strategies with a high sensitivity and specificity. The aim of this prospective study was to evaluate the feasibility of dynamic thermal analysis (DTA) as a potential breast cancer screening tool. METHODS: 173 women undergoing mammography as part of clinical assessment of their breast symptoms were recruited prior to having a biopsy. Thermal data from the breast surface were collected every five minutes for a period of 48 hours using eight thermal sensors placed on each breast surface [First Warning System (FWS), Lifeline Biotechnologies, Florida, USA]. Thermal data were recorded by microprocessors during the test period and analysed using specially developed statistical software. Temperature points from each contra-lateral sensor are plotted against each other to form a thermal motion picture of a lesion's physiological activity. DTA interpretations [positive (abnormal thermal signature) and negative (normal thermal signature)] were compared with mammography and final histology findings. RESULTS: 118 (68%) of participating patients, were found to have breast cancer on final histology. Mammography was diagnostic of malignancy (M5) in 55 (47%), indeterminate (M3, M4) in 54 (46%) and normal/benign (M1, M2) in 9 (8%) patients. DTA data was available on 160 (92.5%) participants. Using our initial algorithm, DTA was interpreted as positive in 113 patients and negative in 47 patients. Abnormal thermal signatures were found in 76 (72%) out of 105 breast cancer patients and 37 of the 55 benign cases. Then we developed a new algorithm using multiple-layer perception and SoftMax output artificial neural networks (ANN) on a subgroup (n = 38) of recorded files. The sensitivity improved to 76% (16/21) and false positives decreased to 26% (7/27) CONCLUSION: DTA of the breast is a feasible, non invasive approach that seems to be sensitive for the detection of breast cancer. However, the test has a limited specificity that can be improved further using ANN. Prospective multi-centre trials are required to validate this promising modality as an adjunct to screening mammography especially in young women with dense breasts. BioMed Central 2006-04-03 /pmc/articles/PMC1450295/ /pubmed/16584542 http://dx.doi.org/10.1186/1477-7800-3-8 Text en Copyright © 2006 Salhab et al; licensee BioMed Central Ltd. http://creativecommons.org/licenses/by/2.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( (http://creativecommons.org/licenses/by/2.0) ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Research
Salhab, M
Keith, LG
Laguens, M
Reeves, W
Mokbel, K
The potential role of dynamic thermal analysis in breast cancer detection
title The potential role of dynamic thermal analysis in breast cancer detection
title_full The potential role of dynamic thermal analysis in breast cancer detection
title_fullStr The potential role of dynamic thermal analysis in breast cancer detection
title_full_unstemmed The potential role of dynamic thermal analysis in breast cancer detection
title_short The potential role of dynamic thermal analysis in breast cancer detection
title_sort potential role of dynamic thermal analysis in breast cancer detection
topic Research
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1450295/
https://www.ncbi.nlm.nih.gov/pubmed/16584542
http://dx.doi.org/10.1186/1477-7800-3-8
work_keys_str_mv AT salhabm thepotentialroleofdynamicthermalanalysisinbreastcancerdetection
AT keithlg thepotentialroleofdynamicthermalanalysisinbreastcancerdetection
AT laguensm thepotentialroleofdynamicthermalanalysisinbreastcancerdetection
AT reevesw thepotentialroleofdynamicthermalanalysisinbreastcancerdetection
AT mokbelk thepotentialroleofdynamicthermalanalysisinbreastcancerdetection
AT salhabm potentialroleofdynamicthermalanalysisinbreastcancerdetection
AT keithlg potentialroleofdynamicthermalanalysisinbreastcancerdetection
AT laguensm potentialroleofdynamicthermalanalysisinbreastcancerdetection
AT reevesw potentialroleofdynamicthermalanalysisinbreastcancerdetection
AT mokbelk potentialroleofdynamicthermalanalysisinbreastcancerdetection