Cargando…

Novel method for high throughput DNA methylation marker evaluation using PNA-probe library hybridization and MALDI-TOF detection

The methylation of CpG dinucleotides has become a topic of great interest in cancer research, and the methylation of promoter regions of several tumor suppressor genes has been identified as a marker of tumorigenesis. Evaluation of DNA methylation markers in tumor tissue requires hundreds of samples...

Descripción completa

Detalles Bibliográficos
Autores principales: Schatz, Philipp, Distler, Jürgen, Berlin, Kurt, Schuster, Matthias
Formato: Texto
Lenguaje:English
Publicado: Oxford University Press 2006
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1456329/
https://www.ncbi.nlm.nih.gov/pubmed/16670426
http://dx.doi.org/10.1093/nar/gkl218
Descripción
Sumario:The methylation of CpG dinucleotides has become a topic of great interest in cancer research, and the methylation of promoter regions of several tumor suppressor genes has been identified as a marker of tumorigenesis. Evaluation of DNA methylation markers in tumor tissue requires hundreds of samples, which must be analyzed quantitatively due to the heterogeneous composition of biological material. Therefore novel, fast and inexpensive methods for high throughput analysis are needed. Here we introduce a new assay based on peptide nucleic acid (PNA)-library hybridization and subsequent MALDI-TOF analysis. This method is multiplexable, allows the use of standard 384 well automated pipetting, and is more specific and flexible than established methods, such as microarrays and MS-SNuPE. The approach was used to evaluate three candidate colon cancer methylation markers previously identified in a microarray study. The methylation of the genes Ade-nomatous polyposis coli (APC), glycogen synthase kinase-β-3 (GSK3β) and eyes absent 4 (EYA4) was analyzed in 12 colon cancer and 12 normal tissues. APC and EYA4 were confirmed as being differentially methylated in colon cancer patients whereas GSK3β did not show differential methylation.