Cargando…
Recursive SVM feature selection and sample classification for mass-spectrometry and microarray data
BACKGROUND: Like microarray-based investigations, high-throughput proteomics techniques require machine learning algorithms to identify biomarkers that are informative for biological classification problems. Feature selection and classification algorithms need to be robust to noise and outliers in t...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2006
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1456993/ https://www.ncbi.nlm.nih.gov/pubmed/16606446 http://dx.doi.org/10.1186/1471-2105-7-197 |
_version_ | 1782127418914373632 |
---|---|
author | Zhang, Xuegong Lu, Xin Shi, Qian Xu, Xiu-qin Leung, Hon-chiu E Harris, Lyndsay N Iglehart, James D Miron, Alexander Liu, Jun S Wong, Wing H |
author_facet | Zhang, Xuegong Lu, Xin Shi, Qian Xu, Xiu-qin Leung, Hon-chiu E Harris, Lyndsay N Iglehart, James D Miron, Alexander Liu, Jun S Wong, Wing H |
author_sort | Zhang, Xuegong |
collection | PubMed |
description | BACKGROUND: Like microarray-based investigations, high-throughput proteomics techniques require machine learning algorithms to identify biomarkers that are informative for biological classification problems. Feature selection and classification algorithms need to be robust to noise and outliers in the data. RESULTS: We developed a recursive support vector machine (R-SVM) algorithm to select important genes/biomarkers for the classification of noisy data. We compared its performance to a similar, state-of-the-art method (SVM recursive feature elimination or SVM-RFE), paying special attention to the ability of recovering the true informative genes/biomarkers and the robustness to outliers in the data. Simulation experiments show that a 5 %-~20 % improvement over SVM-RFE can be achieved regard to these properties. The SVM-based methods are also compared with a conventional univariate method and their respective strengths and weaknesses are discussed. R-SVM was applied to two sets of SELDI-TOF-MS proteomics data, one from a human breast cancer study and the other from a study on rat liver cirrhosis. Important biomarkers found by the algorithm were validated by follow-up biological experiments. CONCLUSION: The proposed R-SVM method is suitable for analyzing noisy high-throughput proteomics and microarray data and it outperforms SVM-RFE in the robustness to noise and in the ability to recover informative features. The multivariate SVM-based method outperforms the univariate method in the classification performance, but univariate methods can reveal more of the differentially expressed features especially when there are correlations between the features. |
format | Text |
id | pubmed-1456993 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2006 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-14569932006-05-04 Recursive SVM feature selection and sample classification for mass-spectrometry and microarray data Zhang, Xuegong Lu, Xin Shi, Qian Xu, Xiu-qin Leung, Hon-chiu E Harris, Lyndsay N Iglehart, James D Miron, Alexander Liu, Jun S Wong, Wing H BMC Bioinformatics Methodology Article BACKGROUND: Like microarray-based investigations, high-throughput proteomics techniques require machine learning algorithms to identify biomarkers that are informative for biological classification problems. Feature selection and classification algorithms need to be robust to noise and outliers in the data. RESULTS: We developed a recursive support vector machine (R-SVM) algorithm to select important genes/biomarkers for the classification of noisy data. We compared its performance to a similar, state-of-the-art method (SVM recursive feature elimination or SVM-RFE), paying special attention to the ability of recovering the true informative genes/biomarkers and the robustness to outliers in the data. Simulation experiments show that a 5 %-~20 % improvement over SVM-RFE can be achieved regard to these properties. The SVM-based methods are also compared with a conventional univariate method and their respective strengths and weaknesses are discussed. R-SVM was applied to two sets of SELDI-TOF-MS proteomics data, one from a human breast cancer study and the other from a study on rat liver cirrhosis. Important biomarkers found by the algorithm were validated by follow-up biological experiments. CONCLUSION: The proposed R-SVM method is suitable for analyzing noisy high-throughput proteomics and microarray data and it outperforms SVM-RFE in the robustness to noise and in the ability to recover informative features. The multivariate SVM-based method outperforms the univariate method in the classification performance, but univariate methods can reveal more of the differentially expressed features especially when there are correlations between the features. BioMed Central 2006-04-10 /pmc/articles/PMC1456993/ /pubmed/16606446 http://dx.doi.org/10.1186/1471-2105-7-197 Text en Copyright © 2006 Zhang et al; licensee BioMed Central Ltd. |
spellingShingle | Methodology Article Zhang, Xuegong Lu, Xin Shi, Qian Xu, Xiu-qin Leung, Hon-chiu E Harris, Lyndsay N Iglehart, James D Miron, Alexander Liu, Jun S Wong, Wing H Recursive SVM feature selection and sample classification for mass-spectrometry and microarray data |
title | Recursive SVM feature selection and sample classification for mass-spectrometry and microarray data |
title_full | Recursive SVM feature selection and sample classification for mass-spectrometry and microarray data |
title_fullStr | Recursive SVM feature selection and sample classification for mass-spectrometry and microarray data |
title_full_unstemmed | Recursive SVM feature selection and sample classification for mass-spectrometry and microarray data |
title_short | Recursive SVM feature selection and sample classification for mass-spectrometry and microarray data |
title_sort | recursive svm feature selection and sample classification for mass-spectrometry and microarray data |
topic | Methodology Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1456993/ https://www.ncbi.nlm.nih.gov/pubmed/16606446 http://dx.doi.org/10.1186/1471-2105-7-197 |
work_keys_str_mv | AT zhangxuegong recursivesvmfeatureselectionandsampleclassificationformassspectrometryandmicroarraydata AT luxin recursivesvmfeatureselectionandsampleclassificationformassspectrometryandmicroarraydata AT shiqian recursivesvmfeatureselectionandsampleclassificationformassspectrometryandmicroarraydata AT xuxiuqin recursivesvmfeatureselectionandsampleclassificationformassspectrometryandmicroarraydata AT leunghonchiue recursivesvmfeatureselectionandsampleclassificationformassspectrometryandmicroarraydata AT harrislyndsayn recursivesvmfeatureselectionandsampleclassificationformassspectrometryandmicroarraydata AT iglehartjamesd recursivesvmfeatureselectionandsampleclassificationformassspectrometryandmicroarraydata AT mironalexander recursivesvmfeatureselectionandsampleclassificationformassspectrometryandmicroarraydata AT liujuns recursivesvmfeatureselectionandsampleclassificationformassspectrometryandmicroarraydata AT wongwingh recursivesvmfeatureselectionandsampleclassificationformassspectrometryandmicroarraydata |