Cargando…

The transformation of spinal curvature into spinal deformity: pathological processes and implications for treatment

BACKGROUND: This review summarizes what is known about the pathological processes (e.g. structural and functional changes), by which spinal curvatures develop and evolve into spinal deformities. METHODS: Comprehensive review of articles (English language only) published on 'scoliosis,' who...

Descripción completa

Detalles Bibliográficos
Autores principales: Hawes, Martha C, O'Brien, Joseph P
Formato: Texto
Lenguaje:English
Publicado: BioMed Central 2006
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1459276/
https://www.ncbi.nlm.nih.gov/pubmed/16759413
http://dx.doi.org/10.1186/1748-7161-1-3
_version_ 1782127486679646208
author Hawes, Martha C
O'Brien, Joseph P
author_facet Hawes, Martha C
O'Brien, Joseph P
author_sort Hawes, Martha C
collection PubMed
description BACKGROUND: This review summarizes what is known about the pathological processes (e.g. structural and functional changes), by which spinal curvatures develop and evolve into spinal deformities. METHODS: Comprehensive review of articles (English language only) published on 'scoliosis,' whose content yielded data on the pathological changes associated with spinal curvatures. Medline, Science Citation Index and other searches yielded > 10,000 titles each of which was surveyed for content related to 'pathology' and related terms such as 'etiology,' 'inheritance,' 'pathomechanism,' 'signs and symptoms.' Additional resources included all books published on 'scoliosis' and available through the Arizona Health Sciences Library, Interlibrary Loan, or through direct contact with the authors or publishers. RESULTS: A lateral curvature of the spine–'scoliosis'–can develop in association with postural imbalance due to genetic defects and injury as well as pain and scarring from trauma or surgery. Irrespective of the factor that triggers its appearance, a sustained postural imbalance can result, over time, in establishment of a state of continuous asymmetric loading relative to the spinal axis. Recent studies support the longstanding hypothesis that spinal deformity results directly from such postural imbalance, irrespective of the primary trigger, because the dynamics of growth within vertebrae are altered by continuous asymmetric mechanical loading. These data suggest that, as long as growth potential remains, evolution of a spinal curvature into a spinal deformity can be prevented by reversing the state of continuous asymmetric loading. CONCLUSION: Spinal curvatures can routinely be diagnosed in early stages, before pathological deformity of the vertebral elements is induced in response to asymmetric loading. Current clinical approaches involve 'watching and waiting' while mild reversible spinal curvatures develop into spinal deformities with potential to cause symptoms throughout life. Research to define patient-specific mechanics of spinal loading may allow quantification of a critical threshold at which curvature establishment and progression become inevitable, and thereby yield strategies to prevent development of spinal deformity. Even within the normal spine there is considerable flexibility with the possibility of producing many types of curves that can be altered during the course of normal movements. To create these curves during normal movement simply requires an imbalance of forces along the spine and, extending this concept a little further, a scoliotic curve is produced simply by a small but sustained imbalance of forces along the spine. In fact I would argue that no matter what you believe to be the cause of AIS, ultimately the problem can be reduced to the production of an imbalance of forces along the spine [1].
format Text
id pubmed-1459276
institution National Center for Biotechnology Information
language English
publishDate 2006
publisher BioMed Central
record_format MEDLINE/PubMed
spelling pubmed-14592762006-05-12 The transformation of spinal curvature into spinal deformity: pathological processes and implications for treatment Hawes, Martha C O'Brien, Joseph P Scoliosis Review BACKGROUND: This review summarizes what is known about the pathological processes (e.g. structural and functional changes), by which spinal curvatures develop and evolve into spinal deformities. METHODS: Comprehensive review of articles (English language only) published on 'scoliosis,' whose content yielded data on the pathological changes associated with spinal curvatures. Medline, Science Citation Index and other searches yielded > 10,000 titles each of which was surveyed for content related to 'pathology' and related terms such as 'etiology,' 'inheritance,' 'pathomechanism,' 'signs and symptoms.' Additional resources included all books published on 'scoliosis' and available through the Arizona Health Sciences Library, Interlibrary Loan, or through direct contact with the authors or publishers. RESULTS: A lateral curvature of the spine–'scoliosis'–can develop in association with postural imbalance due to genetic defects and injury as well as pain and scarring from trauma or surgery. Irrespective of the factor that triggers its appearance, a sustained postural imbalance can result, over time, in establishment of a state of continuous asymmetric loading relative to the spinal axis. Recent studies support the longstanding hypothesis that spinal deformity results directly from such postural imbalance, irrespective of the primary trigger, because the dynamics of growth within vertebrae are altered by continuous asymmetric mechanical loading. These data suggest that, as long as growth potential remains, evolution of a spinal curvature into a spinal deformity can be prevented by reversing the state of continuous asymmetric loading. CONCLUSION: Spinal curvatures can routinely be diagnosed in early stages, before pathological deformity of the vertebral elements is induced in response to asymmetric loading. Current clinical approaches involve 'watching and waiting' while mild reversible spinal curvatures develop into spinal deformities with potential to cause symptoms throughout life. Research to define patient-specific mechanics of spinal loading may allow quantification of a critical threshold at which curvature establishment and progression become inevitable, and thereby yield strategies to prevent development of spinal deformity. Even within the normal spine there is considerable flexibility with the possibility of producing many types of curves that can be altered during the course of normal movements. To create these curves during normal movement simply requires an imbalance of forces along the spine and, extending this concept a little further, a scoliotic curve is produced simply by a small but sustained imbalance of forces along the spine. In fact I would argue that no matter what you believe to be the cause of AIS, ultimately the problem can be reduced to the production of an imbalance of forces along the spine [1]. BioMed Central 2006-03-31 /pmc/articles/PMC1459276/ /pubmed/16759413 http://dx.doi.org/10.1186/1748-7161-1-3 Text en Copyright © 2006 Hawes and O'Brien; licensee BioMed Central Ltd. http://creativecommons.org/licenses/by/2.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( (http://creativecommons.org/licenses/by/2.0) ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Review
Hawes, Martha C
O'Brien, Joseph P
The transformation of spinal curvature into spinal deformity: pathological processes and implications for treatment
title The transformation of spinal curvature into spinal deformity: pathological processes and implications for treatment
title_full The transformation of spinal curvature into spinal deformity: pathological processes and implications for treatment
title_fullStr The transformation of spinal curvature into spinal deformity: pathological processes and implications for treatment
title_full_unstemmed The transformation of spinal curvature into spinal deformity: pathological processes and implications for treatment
title_short The transformation of spinal curvature into spinal deformity: pathological processes and implications for treatment
title_sort transformation of spinal curvature into spinal deformity: pathological processes and implications for treatment
topic Review
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1459276/
https://www.ncbi.nlm.nih.gov/pubmed/16759413
http://dx.doi.org/10.1186/1748-7161-1-3
work_keys_str_mv AT hawesmarthac thetransformationofspinalcurvatureintospinaldeformitypathologicalprocessesandimplicationsfortreatment
AT obrienjosephp thetransformationofspinalcurvatureintospinaldeformitypathologicalprocessesandimplicationsfortreatment
AT hawesmarthac transformationofspinalcurvatureintospinaldeformitypathologicalprocessesandimplicationsfortreatment
AT obrienjosephp transformationofspinalcurvatureintospinaldeformitypathologicalprocessesandimplicationsfortreatment