Cargando…
Kinetics of error generation in homologous B-family DNA polymerases
The kinetics of forming a proper Watson–Crick base pair as well incorporating bases opposite furan, an abasic site analog, have been well characterized for the B Family replicative DNA polymerase from bacteriophage T4. Structural studies of these reactions, however, have only been performed with the...
Autores principales: | , , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2006
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1459414/ https://www.ncbi.nlm.nih.gov/pubmed/16687658 http://dx.doi.org/10.1093/nar/gkl300 |
_version_ | 1782127488096272384 |
---|---|
author | Hogg, Matthew Cooper, Wendy Reha-Krantz, Linda Wallace, Susan S. |
author_facet | Hogg, Matthew Cooper, Wendy Reha-Krantz, Linda Wallace, Susan S. |
author_sort | Hogg, Matthew |
collection | PubMed |
description | The kinetics of forming a proper Watson–Crick base pair as well incorporating bases opposite furan, an abasic site analog, have been well characterized for the B Family replicative DNA polymerase from bacteriophage T4. Structural studies of these reactions, however, have only been performed with the homologous enzyme from bacteriophage RB69. In this work, the homologous enzymes from RB69 and T4 were compared in parallel reactions to determine the relative abilities of the two polymerases to incorporate correct nucleotides as well as to form improper pairings. The kinetic rates for three different exonuclease mutants for each enzyme were measured for incorporation of an A opposite T and an A opposite furan as well as for the formation of A:C and T:T mismatches. The T4 exonuclease mutants were all ∼2- to 7-fold more efficient than the corresponding RB69 exonuclease mutants depending on whether a T or furan was in the templating position and which exonuclease mutant was used. The rates for mismatch formation by T4 were significantly reduced compared with incorporation opposite furan, much more so than the corresponding RB69 mutant. These results show that there are kinetic differences between the two enzymes but they are not large enough to preclude structural assumptions for T4 DNA polymerase based on the known structure of the RB69 DNA polymerase. |
format | Text |
id | pubmed-1459414 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2006 |
publisher | Oxford University Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-14594142006-05-15 Kinetics of error generation in homologous B-family DNA polymerases Hogg, Matthew Cooper, Wendy Reha-Krantz, Linda Wallace, Susan S. Nucleic Acids Res Article The kinetics of forming a proper Watson–Crick base pair as well incorporating bases opposite furan, an abasic site analog, have been well characterized for the B Family replicative DNA polymerase from bacteriophage T4. Structural studies of these reactions, however, have only been performed with the homologous enzyme from bacteriophage RB69. In this work, the homologous enzymes from RB69 and T4 were compared in parallel reactions to determine the relative abilities of the two polymerases to incorporate correct nucleotides as well as to form improper pairings. The kinetic rates for three different exonuclease mutants for each enzyme were measured for incorporation of an A opposite T and an A opposite furan as well as for the formation of A:C and T:T mismatches. The T4 exonuclease mutants were all ∼2- to 7-fold more efficient than the corresponding RB69 exonuclease mutants depending on whether a T or furan was in the templating position and which exonuclease mutant was used. The rates for mismatch formation by T4 were significantly reduced compared with incorporation opposite furan, much more so than the corresponding RB69 mutant. These results show that there are kinetic differences between the two enzymes but they are not large enough to preclude structural assumptions for T4 DNA polymerase based on the known structure of the RB69 DNA polymerase. Oxford University Press 2006 2006-05-10 /pmc/articles/PMC1459414/ /pubmed/16687658 http://dx.doi.org/10.1093/nar/gkl300 Text en © The Author 2006. Published by Oxford University Press. All rights reserved |
spellingShingle | Article Hogg, Matthew Cooper, Wendy Reha-Krantz, Linda Wallace, Susan S. Kinetics of error generation in homologous B-family DNA polymerases |
title | Kinetics of error generation in homologous B-family DNA polymerases |
title_full | Kinetics of error generation in homologous B-family DNA polymerases |
title_fullStr | Kinetics of error generation in homologous B-family DNA polymerases |
title_full_unstemmed | Kinetics of error generation in homologous B-family DNA polymerases |
title_short | Kinetics of error generation in homologous B-family DNA polymerases |
title_sort | kinetics of error generation in homologous b-family dna polymerases |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1459414/ https://www.ncbi.nlm.nih.gov/pubmed/16687658 http://dx.doi.org/10.1093/nar/gkl300 |
work_keys_str_mv | AT hoggmatthew kineticsoferrorgenerationinhomologousbfamilydnapolymerases AT cooperwendy kineticsoferrorgenerationinhomologousbfamilydnapolymerases AT rehakrantzlinda kineticsoferrorgenerationinhomologousbfamilydnapolymerases AT wallacesusans kineticsoferrorgenerationinhomologousbfamilydnapolymerases |