Cargando…
Bioinformatic screening of human ESTs for differentially expressed genes in normal and tumor tissues
BACKGROUND: Owing to the explosion of information generated by human genomics, analysis of publicly available databases can help identify potential candidate genes relevant to the cancerous phenotype. The aim of this study was to scan for such genes by whole-genome in silico subtraction using Expres...
Autores principales: | , , , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2006
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1459866/ https://www.ncbi.nlm.nih.gov/pubmed/16640784 http://dx.doi.org/10.1186/1471-2164-7-94 |
_version_ | 1782127503251341312 |
---|---|
author | Aouacheria, Abdel Navratil, Vincent Barthelaix, Audrey Mouchiroud, Dominique Gautier, Christian |
author_facet | Aouacheria, Abdel Navratil, Vincent Barthelaix, Audrey Mouchiroud, Dominique Gautier, Christian |
author_sort | Aouacheria, Abdel |
collection | PubMed |
description | BACKGROUND: Owing to the explosion of information generated by human genomics, analysis of publicly available databases can help identify potential candidate genes relevant to the cancerous phenotype. The aim of this study was to scan for such genes by whole-genome in silico subtraction using Expressed Sequence Tag (EST) data. METHODS: Genes differentially expressed in normal versus tumor tissues were identified using a computer-based differential display strategy. Bcl-xL, an anti-apoptotic member of the Bcl-2 family, was selected for confirmation by western blot analysis. RESULTS: Our genome-wide expression analysis identified a set of genes whose differential expression may be attributed to the genetic alterations associated with tumor formation and malignant growth. We propose complete lists of genes that may serve as targets for projects seeking novel candidates for cancer diagnosis and therapy. Our validation result showed increased protein levels of Bcl-xL in two different liver cancer specimens compared to normal liver. Notably, our EST-based data mining procedure indicated that most of the changes in gene expression observed in cancer cells corresponded to gene inactivation patterns. Chromosomes and chromosomal regions most frequently associated with aberrant expression changes in cancer libraries were also determined. CONCLUSION: Through the description of several candidates (including genes encoding extracellular matrix and ribosomal components, cytoskeletal proteins, apoptotic regulators, and novel tissue-specific biomarkers), our study illustrates the utility of in silico transcriptomics to identify tumor cell signatures, tumor-related genes and chromosomal regions frequently associated with aberrant expression in cancer. |
format | Text |
id | pubmed-1459866 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2006 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-14598662006-05-13 Bioinformatic screening of human ESTs for differentially expressed genes in normal and tumor tissues Aouacheria, Abdel Navratil, Vincent Barthelaix, Audrey Mouchiroud, Dominique Gautier, Christian BMC Genomics Research Article BACKGROUND: Owing to the explosion of information generated by human genomics, analysis of publicly available databases can help identify potential candidate genes relevant to the cancerous phenotype. The aim of this study was to scan for such genes by whole-genome in silico subtraction using Expressed Sequence Tag (EST) data. METHODS: Genes differentially expressed in normal versus tumor tissues were identified using a computer-based differential display strategy. Bcl-xL, an anti-apoptotic member of the Bcl-2 family, was selected for confirmation by western blot analysis. RESULTS: Our genome-wide expression analysis identified a set of genes whose differential expression may be attributed to the genetic alterations associated with tumor formation and malignant growth. We propose complete lists of genes that may serve as targets for projects seeking novel candidates for cancer diagnosis and therapy. Our validation result showed increased protein levels of Bcl-xL in two different liver cancer specimens compared to normal liver. Notably, our EST-based data mining procedure indicated that most of the changes in gene expression observed in cancer cells corresponded to gene inactivation patterns. Chromosomes and chromosomal regions most frequently associated with aberrant expression changes in cancer libraries were also determined. CONCLUSION: Through the description of several candidates (including genes encoding extracellular matrix and ribosomal components, cytoskeletal proteins, apoptotic regulators, and novel tissue-specific biomarkers), our study illustrates the utility of in silico transcriptomics to identify tumor cell signatures, tumor-related genes and chromosomal regions frequently associated with aberrant expression in cancer. BioMed Central 2006-04-26 /pmc/articles/PMC1459866/ /pubmed/16640784 http://dx.doi.org/10.1186/1471-2164-7-94 Text en Copyright © 2006 Aouacheria et al; licensee BioMed Central Ltd. |
spellingShingle | Research Article Aouacheria, Abdel Navratil, Vincent Barthelaix, Audrey Mouchiroud, Dominique Gautier, Christian Bioinformatic screening of human ESTs for differentially expressed genes in normal and tumor tissues |
title | Bioinformatic screening of human ESTs for differentially expressed genes in normal and tumor tissues |
title_full | Bioinformatic screening of human ESTs for differentially expressed genes in normal and tumor tissues |
title_fullStr | Bioinformatic screening of human ESTs for differentially expressed genes in normal and tumor tissues |
title_full_unstemmed | Bioinformatic screening of human ESTs for differentially expressed genes in normal and tumor tissues |
title_short | Bioinformatic screening of human ESTs for differentially expressed genes in normal and tumor tissues |
title_sort | bioinformatic screening of human ests for differentially expressed genes in normal and tumor tissues |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1459866/ https://www.ncbi.nlm.nih.gov/pubmed/16640784 http://dx.doi.org/10.1186/1471-2164-7-94 |
work_keys_str_mv | AT aouacheriaabdel bioinformaticscreeningofhumanestsfordifferentiallyexpressedgenesinnormalandtumortissues AT navratilvincent bioinformaticscreeningofhumanestsfordifferentiallyexpressedgenesinnormalandtumortissues AT barthelaixaudrey bioinformaticscreeningofhumanestsfordifferentiallyexpressedgenesinnormalandtumortissues AT mouchirouddominique bioinformaticscreeningofhumanestsfordifferentiallyexpressedgenesinnormalandtumortissues AT gautierchristian bioinformaticscreeningofhumanestsfordifferentiallyexpressedgenesinnormalandtumortissues |