Cargando…

Reproduction, Embryonic Development, and Maternal Transfer of Contaminants in the Amphibian Gastrophryne carolinensis

Although many amphibian populations around the world are declining at alarming rates, the cause of most declines remains unknown. Environmental contamination is one of several factors implicated in declines and may have particularly important effects on sensitive developmental stages. Despite the se...

Descripción completa

Detalles Bibliográficos
Autores principales: Hopkins, William Alexander, DuRant, Sarah Elizabeth, Staub, Brandon Patrick, Rowe, Christopher Lee, Jackson, Brian Phillip
Formato: Texto
Lenguaje:English
Publicado: National Institute of Environmental Health Sciences 2006
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1459916/
https://www.ncbi.nlm.nih.gov/pubmed/16675417
http://dx.doi.org/10.1289/ehp.8457
Descripción
Sumario:Although many amphibian populations around the world are declining at alarming rates, the cause of most declines remains unknown. Environmental contamination is one of several factors implicated in declines and may have particularly important effects on sensitive developmental stages. Despite the severe effects of maternal transfer of contaminants on early development in other vertebrate lineages, no studies have examined the effects of maternal transfer of contaminants on reproduction or development in amphibians. We examined maternal transfer of contaminants in eastern narrow-mouth toads (Gastrophryne carolinensis) collected from a reference site and near a coal-burning power plant. Adult toads inhabiting the industrial area transferred significant quantities of selenium and strontium to their eggs, but Se concentrations were most notable (up to 100 μg/g dry mass). Compared with the reference site, hatching success was reduced by 11% in clutches from the contaminated site. In surviving larvae, the frequency of developmental abnormalities and abnormal swimming was 55–58% higher in the contaminated site relative to the reference site. Craniofacial abnormalities were nearly an order of magnitude more prevalent in hatchlings from the contaminated site. When all developmental criteria were considered collectively, offspring from the contaminated site experienced 19% lower viability. Although there was no statistical relationship between the concentration of Se or Sr transferred to eggs and any measure of offspring viability, our study demonstrates that maternal transfer may be an important route of contaminant exposure in amphibians that has been overlooked.