Cargando…
Optimized Particle Swarm Optimization (OPSO) and its application to artificial neural network training
BACKGROUND: Particle Swarm Optimization (PSO) is an established method for parameter optimization. It represents a population-based adaptive optimization technique that is influenced by several "strategy parameters". Choosing reasonable parameter values for the PSO is crucial for its conve...
Autores principales: | Meissner, Michael, Schmuker, Michael, Schneider, Gisbert |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2006
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1464136/ https://www.ncbi.nlm.nih.gov/pubmed/16529661 http://dx.doi.org/10.1186/1471-2105-7-125 |
Ejemplares similares
-
Optimal knockout strategies in genome-scale metabolic networks using particle swarm optimization
por: Nair, Govind, et al.
Publicado: (2017) -
Designing Artificial Neural Networks Using Particle Swarm Optimization Algorithms
por: Garro, Beatriz A., et al.
Publicado: (2015) -
Chaos-embedded particle swarm optimization approach for protein-ligand docking and virtual screening
por: Tai, Hio Kuan, et al.
Publicado: (2018) -
ParticleChromo3D: a Particle Swarm Optimization algorithm for chromosome 3D structure prediction from Hi-C data
por: Vadnais, David, et al.
Publicado: (2022) -
Development of an Artificial Neural Network Utilizing Particle Swarm Optimization for Modeling the Spray Drying of Coconut Milk
por: Ming, Jesse Lee Kar, et al.
Publicado: (2021)