Cargando…

Toxicology of chlorofluorocarbon replacements.

Chlorofluorocarbons (CFCs) are stable in the atmosphere and may reach the stratosphere. They are cleaved by UV-radiation in the stratosphere to yield chlorine radicals, which are thought to interfere with the catalytic cycle of ozone formation and destruction and deplete stratospheric ozone concentr...

Descripción completa

Detalles Bibliográficos
Autor principal: Dekant, W
Formato: Texto
Lenguaje:English
Publicado: 1996
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1469564/
https://www.ncbi.nlm.nih.gov/pubmed/8722112
_version_ 1782127637008744448
author Dekant, W
author_facet Dekant, W
author_sort Dekant, W
collection PubMed
description Chlorofluorocarbons (CFCs) are stable in the atmosphere and may reach the stratosphere. They are cleaved by UV-radiation in the stratosphere to yield chlorine radicals, which are thought to interfere with the catalytic cycle of ozone formation and destruction and deplete stratospheric ozone concentrations. Due to potential adverse health effects of ozone depletion, chlorofluorocarbon replacements with much lower or absent ozone depleting potential are developed. The toxicology of these compounds that represent chlorofluorohydrocarbons (HCFCs) or fluorohydrocarbons (HFCs) has been intensively studied. All compounds investigated (1, 1-dichloro-1-fluoroethane [HCFC-141b], 1,1,1,2-tetrafluoroethane [HFC-134a], pentafluoroethane [HFC-125], 1-chloro- 1,2,2,2-tetrafluoroethane [HCFC-124], and 1,1-dichloro-2,2,2-trifluoroethane [HCFC-123]) show only a low potential for skin and eye irritation. Chronic adverse effects on the liver (HCFC-123) and the testes (HCFC-141b and HCFC-134a), including tumor formation, were observed in long-term inhalation studies in rodents using very high concentrations of these CFC replacements. All CFC replacements are, to varying extents, biotransformed in the organism, mainly by cytochrome P450-catalyzed oxidation of C-H bonds. The formed acyl halides are hydrolyzed to give excretable carboxylic acids; halogenated aldehydes that are formed may be further oxidized to halogenated carboxylic acids or reduced to halogenated alcohols, which are excretory metabolites in urine from rodents exposed experimentally to CFC replacements. The chronic toxicity of the CFC replacements studied is unlikely to be of relevance for humans exposed during production and application of CFC replacements.
format Text
id pubmed-1469564
institution National Center for Biotechnology Information
language English
publishDate 1996
record_format MEDLINE/PubMed
spelling pubmed-14695642006-06-01 Toxicology of chlorofluorocarbon replacements. Dekant, W Environ Health Perspect Research Article Chlorofluorocarbons (CFCs) are stable in the atmosphere and may reach the stratosphere. They are cleaved by UV-radiation in the stratosphere to yield chlorine radicals, which are thought to interfere with the catalytic cycle of ozone formation and destruction and deplete stratospheric ozone concentrations. Due to potential adverse health effects of ozone depletion, chlorofluorocarbon replacements with much lower or absent ozone depleting potential are developed. The toxicology of these compounds that represent chlorofluorohydrocarbons (HCFCs) or fluorohydrocarbons (HFCs) has been intensively studied. All compounds investigated (1, 1-dichloro-1-fluoroethane [HCFC-141b], 1,1,1,2-tetrafluoroethane [HFC-134a], pentafluoroethane [HFC-125], 1-chloro- 1,2,2,2-tetrafluoroethane [HCFC-124], and 1,1-dichloro-2,2,2-trifluoroethane [HCFC-123]) show only a low potential for skin and eye irritation. Chronic adverse effects on the liver (HCFC-123) and the testes (HCFC-141b and HCFC-134a), including tumor formation, were observed in long-term inhalation studies in rodents using very high concentrations of these CFC replacements. All CFC replacements are, to varying extents, biotransformed in the organism, mainly by cytochrome P450-catalyzed oxidation of C-H bonds. The formed acyl halides are hydrolyzed to give excretable carboxylic acids; halogenated aldehydes that are formed may be further oxidized to halogenated carboxylic acids or reduced to halogenated alcohols, which are excretory metabolites in urine from rodents exposed experimentally to CFC replacements. The chronic toxicity of the CFC replacements studied is unlikely to be of relevance for humans exposed during production and application of CFC replacements. 1996-03 /pmc/articles/PMC1469564/ /pubmed/8722112 Text en
spellingShingle Research Article
Dekant, W
Toxicology of chlorofluorocarbon replacements.
title Toxicology of chlorofluorocarbon replacements.
title_full Toxicology of chlorofluorocarbon replacements.
title_fullStr Toxicology of chlorofluorocarbon replacements.
title_full_unstemmed Toxicology of chlorofluorocarbon replacements.
title_short Toxicology of chlorofluorocarbon replacements.
title_sort toxicology of chlorofluorocarbon replacements.
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1469564/
https://www.ncbi.nlm.nih.gov/pubmed/8722112
work_keys_str_mv AT dekantw toxicologyofchlorofluorocarbonreplacements