Cargando…

Increase in the 8-hydroxyguanine repair activity in the rat kidney after the administration of a renal carcinogen, ferric nitrilotriacetate.

One type of oxidative DNA damage, 8-hydroxyguanine (8-OH-Gua), is known to increase in rat kidney DNA after the administration of a renal carcinogen, ferric nitrilotriacetate (Fe-NTA). To determine the involvement of oxygen radicals in Fe-NTA carcinogenesis, we examined whether the 8-OH-Gua repair e...

Descripción completa

Detalles Bibliográficos
Autores principales: Yamaguchi, R, Hirano, T, Asami, S, Sugita, A, Kasai, H
Formato: Texto
Lenguaje:English
Publicado: 1996
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1469657/
https://www.ncbi.nlm.nih.gov/pubmed/8781399
Descripción
Sumario:One type of oxidative DNA damage, 8-hydroxyguanine (8-OH-Gua), is known to increase in rat kidney DNA after the administration of a renal carcinogen, ferric nitrilotriacetate (Fe-NTA). To determine the involvement of oxygen radicals in Fe-NTA carcinogenesis, we examined whether the 8-OH-Gua repair enzymes are induced in the rat kidney after Fe-NTA administration, in addition to our analysis of the 8-OH-Gua levels in the DNA, because the 8-OH-Gua repair activity is known to be induced in mammalian cells by oxidative stress due to ionizing radiation. The 8-OH-Gua repair enzyme activity was determined with an endonuclease assay using a 22-mer double strand DNA, which contains 8-OH-Gua at a specific position. A significant increase in the 8-OH-Gua repair activity was observed in the rat kidney after a single intraperitoneal injection of Fe-NTA (p < 0.01). This is the first report on the induction of the repair activity for 8-OH-Gua after treatment with a chemical carcinogen. This assay will be useful for evaluating the carcinogenicity of oxygen radical-forming chemicals.