Cargando…
A lung retention model based on Michaelis-Menten-like kinetics.
A Michaelis-Menten (MM)-like kinetic model for pulmonary clearance and retention of insoluble dusts was developed and validated by comparing our predictions with experimental data from F344 rats. Published data from inhalation studies involving accumulation and elimination of photocopy test toner, a...
Autores principales: | , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
1997
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1469867/ https://www.ncbi.nlm.nih.gov/pubmed/9222134 |
_version_ | 1782127701719515136 |
---|---|
author | Yu, R C Rappaport, S M |
author_facet | Yu, R C Rappaport, S M |
author_sort | Yu, R C |
collection | PubMed |
description | A Michaelis-Menten (MM)-like kinetic model for pulmonary clearance and retention of insoluble dusts was developed and validated by comparing our predictions with experimental data from F344 rats. Published data from inhalation studies involving accumulation and elimination of photocopy test toner, antimony trioxide, carbon black, and diesel exhaust particles were investigated. Numerical integration techniques were used to solve mass balance relationships based upon dust retention in a single lung compartment and clearance via an MM-like kinetic process. The model fit most of the experimental data well. The parameters of MM-like clearance kinetics, which had been derived strictly from the elimination phase, accurately predicted dust retention during the elimination as well as accumulation phases. Furthermore, parameters estimated from one study could accurately predict retention of the same dust in other studies. Particle density and gender of the animals had no effect on the goodness of fit of model predictions. This study suggests that MM-like kinetics offer a reasonable description of particle clearance from the pulmonary region of the rat lung that is more parsimonious than existing particle-clearance models and therefore more suitable for use with small amounts of data. |
format | Text |
id | pubmed-1469867 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 1997 |
record_format | MEDLINE/PubMed |
spelling | pubmed-14698672006-06-01 A lung retention model based on Michaelis-Menten-like kinetics. Yu, R C Rappaport, S M Environ Health Perspect Research Article A Michaelis-Menten (MM)-like kinetic model for pulmonary clearance and retention of insoluble dusts was developed and validated by comparing our predictions with experimental data from F344 rats. Published data from inhalation studies involving accumulation and elimination of photocopy test toner, antimony trioxide, carbon black, and diesel exhaust particles were investigated. Numerical integration techniques were used to solve mass balance relationships based upon dust retention in a single lung compartment and clearance via an MM-like kinetic process. The model fit most of the experimental data well. The parameters of MM-like clearance kinetics, which had been derived strictly from the elimination phase, accurately predicted dust retention during the elimination as well as accumulation phases. Furthermore, parameters estimated from one study could accurately predict retention of the same dust in other studies. Particle density and gender of the animals had no effect on the goodness of fit of model predictions. This study suggests that MM-like kinetics offer a reasonable description of particle clearance from the pulmonary region of the rat lung that is more parsimonious than existing particle-clearance models and therefore more suitable for use with small amounts of data. 1997-05 /pmc/articles/PMC1469867/ /pubmed/9222134 Text en |
spellingShingle | Research Article Yu, R C Rappaport, S M A lung retention model based on Michaelis-Menten-like kinetics. |
title | A lung retention model based on Michaelis-Menten-like kinetics. |
title_full | A lung retention model based on Michaelis-Menten-like kinetics. |
title_fullStr | A lung retention model based on Michaelis-Menten-like kinetics. |
title_full_unstemmed | A lung retention model based on Michaelis-Menten-like kinetics. |
title_short | A lung retention model based on Michaelis-Menten-like kinetics. |
title_sort | lung retention model based on michaelis-menten-like kinetics. |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1469867/ https://www.ncbi.nlm.nih.gov/pubmed/9222134 |
work_keys_str_mv | AT yurc alungretentionmodelbasedonmichaelismentenlikekinetics AT rappaportsm alungretentionmodelbasedonmichaelismentenlikekinetics AT yurc lungretentionmodelbasedonmichaelismentenlikekinetics AT rappaportsm lungretentionmodelbasedonmichaelismentenlikekinetics |