Cargando…

The Russian radiation legacy: its integrated impact and lessons.

Information about the consequences of human exposure to radiation in the former Soviet Union has recently become available. These data add new insights and provide possible answers to several important questions regarding radiation and its impact on occupational and public health. The 1986 Chernobyl...

Descripción completa

Detalles Bibliográficos
Autor principal: Goldman, M
Formato: Texto
Lenguaje:English
Publicado: 1997
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1469939/
https://www.ncbi.nlm.nih.gov/pubmed/9467049
_version_ 1782127717995511808
author Goldman, M
author_facet Goldman, M
author_sort Goldman, M
collection PubMed
description Information about the consequences of human exposure to radiation in the former Soviet Union has recently become available. These data add new insights and provide possible answers to several important questions regarding radiation and its impact on occupational and public health. The 1986 Chernobyl accident initiated a major and early increase in childhood thyroid cancer that resulted from ingestion of iodine-131 (131I) by young children living in the most heavily contaminated areas of Belarus, Ukraine, and Russia. No significant additional cancer or other adverse medical effects have yet been reported in the affected populations and among clean-up workers. Major psychological stress independent of radiation dose has been observed in those people thought to be exposed. During the early days of the atomic energy program in the former Soviet Union, some unfortunate events occurred. The country's first atomic test in Semipalatinsk in 1949 exposed over 25,000 people downwind from the blast to significant doses of fission products, especially 131I. During the late 1940s and the early 1950s nuclear material production facilities were developed near Chelyabinsk in the South Ural Mountains, which resulted in major releases into the environment and significant overexposures for thousands of workers and nearby populations. Chronic radiation sickness was observed early in exposed workers, and increases in leukemia and other cancers were also reported. The series of plutonium inhalation-related lung cancers and fatalities among workers exposed in that first decade appears to be unique. Long-term consequences of chronic radiation sickness and four decades of follow-up are being described for the first time. Villagers downstream from the plant consumed high levels of 137Cs and 90Sr and, it is reported, manifested increases in leukemia from internal and external exposures. Although the 40-year databases for retrospective dosimetry epidemiology studies are just beginning to be integrated and evaluated, preliminary evaluations suggest that there may be graded, significant dose-rate amelioration factors for cancer and leukemia risks in workers and the general population relative to the risk data on the Japanese atomic bomb survivors. Even for plutonium-induced lung cancers in workers, such a dose-rate effect may be evident. These experiences give us insight into the consequences of protracted radiation at high and low doses and rates. If these findings are validated and confirmed, they can provide information that reduces some of the uncertainties in retrospective radiation dosimetry and radiation risk estimates (especially for low-level, chronic exposures) for activities related to medicine as well as the handling of nuclear materials and nuclear facility decommissioning, decontamination, and demilitarization.
format Text
id pubmed-1469939
institution National Center for Biotechnology Information
language English
publishDate 1997
record_format MEDLINE/PubMed
spelling pubmed-14699392006-06-01 The Russian radiation legacy: its integrated impact and lessons. Goldman, M Environ Health Perspect Research Article Information about the consequences of human exposure to radiation in the former Soviet Union has recently become available. These data add new insights and provide possible answers to several important questions regarding radiation and its impact on occupational and public health. The 1986 Chernobyl accident initiated a major and early increase in childhood thyroid cancer that resulted from ingestion of iodine-131 (131I) by young children living in the most heavily contaminated areas of Belarus, Ukraine, and Russia. No significant additional cancer or other adverse medical effects have yet been reported in the affected populations and among clean-up workers. Major psychological stress independent of radiation dose has been observed in those people thought to be exposed. During the early days of the atomic energy program in the former Soviet Union, some unfortunate events occurred. The country's first atomic test in Semipalatinsk in 1949 exposed over 25,000 people downwind from the blast to significant doses of fission products, especially 131I. During the late 1940s and the early 1950s nuclear material production facilities were developed near Chelyabinsk in the South Ural Mountains, which resulted in major releases into the environment and significant overexposures for thousands of workers and nearby populations. Chronic radiation sickness was observed early in exposed workers, and increases in leukemia and other cancers were also reported. The series of plutonium inhalation-related lung cancers and fatalities among workers exposed in that first decade appears to be unique. Long-term consequences of chronic radiation sickness and four decades of follow-up are being described for the first time. Villagers downstream from the plant consumed high levels of 137Cs and 90Sr and, it is reported, manifested increases in leukemia from internal and external exposures. Although the 40-year databases for retrospective dosimetry epidemiology studies are just beginning to be integrated and evaluated, preliminary evaluations suggest that there may be graded, significant dose-rate amelioration factors for cancer and leukemia risks in workers and the general population relative to the risk data on the Japanese atomic bomb survivors. Even for plutonium-induced lung cancers in workers, such a dose-rate effect may be evident. These experiences give us insight into the consequences of protracted radiation at high and low doses and rates. If these findings are validated and confirmed, they can provide information that reduces some of the uncertainties in retrospective radiation dosimetry and radiation risk estimates (especially for low-level, chronic exposures) for activities related to medicine as well as the handling of nuclear materials and nuclear facility decommissioning, decontamination, and demilitarization. 1997-12 /pmc/articles/PMC1469939/ /pubmed/9467049 Text en
spellingShingle Research Article
Goldman, M
The Russian radiation legacy: its integrated impact and lessons.
title The Russian radiation legacy: its integrated impact and lessons.
title_full The Russian radiation legacy: its integrated impact and lessons.
title_fullStr The Russian radiation legacy: its integrated impact and lessons.
title_full_unstemmed The Russian radiation legacy: its integrated impact and lessons.
title_short The Russian radiation legacy: its integrated impact and lessons.
title_sort russian radiation legacy: its integrated impact and lessons.
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1469939/
https://www.ncbi.nlm.nih.gov/pubmed/9467049
work_keys_str_mv AT goldmanm therussianradiationlegacyitsintegratedimpactandlessons
AT goldmanm russianradiationlegacyitsintegratedimpactandlessons