Cargando…

The effect of outdoor fungal spore concentrations on daily asthma severity.

The relationship between day-to-day changes in asthma severity and combined exposures to community air pollutants and aeroallergens remains to be clearly defined. We examined the effects of outdoor air pollutants, fungi, and pollen on asthma. Twenty-two asthmatics ages 9-46 years were followed for 8...

Descripción completa

Detalles Bibliográficos
Autores principales: Delfino, R J, Zeiger, R S, Seltzer, J M, Street, D H, Matteucci, R M, Anderson, P R, Koutrakis, P
Formato: Texto
Lenguaje:English
Publicado: 1997
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1470068/
https://www.ncbi.nlm.nih.gov/pubmed/9288497
_version_ 1782127746283995136
author Delfino, R J
Zeiger, R S
Seltzer, J M
Street, D H
Matteucci, R M
Anderson, P R
Koutrakis, P
author_facet Delfino, R J
Zeiger, R S
Seltzer, J M
Street, D H
Matteucci, R M
Anderson, P R
Koutrakis, P
author_sort Delfino, R J
collection PubMed
description The relationship between day-to-day changes in asthma severity and combined exposures to community air pollutants and aeroallergens remains to be clearly defined. We examined the effects of outdoor air pollutants, fungi, and pollen on asthma. Twenty-two asthmatics ages 9-46 years were followed for 8 weeks (9 May-3 July 1994) in a semirural Southern California community around the air inversion base elevation (1,200 ft). Daily diary responses included asthma symptom severity (6 levels), morning and evening peak expiratory flow rates (PEFR), and as-needed beta-agonist inhaler use. Exposures included 24-hr outdoor concentrations of fungi, pollen, and particulate matter with a diameter < 10 microns (PM10; maximum = 51 micrograms/m3) and 12-hour day-time personal ozone (O3) measurements (90th percentile = 38 ppb). Random effects longitudinal regression models controlled for autocorrelation and weather. Higher temperatures were strongly protective, probably due to air conditioning use and diminished indoor allergens during hot, dry periods. Controlling for weather, total fungal spore concentrations were associated with all outcomes: per minimum to 90th percentile increase of nearly 4,000 spores/m3, asthma symptom scores increased 0.36 (95% CI, 0.16-0.56), inhaler use increased 0.33 puffs (95% CI, -0.02-0.69), and evening PEFR decreased 12.1 l/min (95% CI, -1.8-22.3). These associations were greatly enhanced by examining certain fungal types (e.g., Alternaria, basidiospores, and hyphal fragments) and stratifying on 16 asthmatics allergic to tested deuteromycete fungi. There were no significant associations to low levels of pollen or O3, but inhaler use was associated with PM10 (0.15 inhaler puffs/10 micrograms/m3; p < 0.02). These findings suggest that exposure to fungal spores can adversely effect the daily respiratory status of some asthmatics.
format Text
id pubmed-1470068
institution National Center for Biotechnology Information
language English
publishDate 1997
record_format MEDLINE/PubMed
spelling pubmed-14700682006-06-01 The effect of outdoor fungal spore concentrations on daily asthma severity. Delfino, R J Zeiger, R S Seltzer, J M Street, D H Matteucci, R M Anderson, P R Koutrakis, P Environ Health Perspect Research Article The relationship between day-to-day changes in asthma severity and combined exposures to community air pollutants and aeroallergens remains to be clearly defined. We examined the effects of outdoor air pollutants, fungi, and pollen on asthma. Twenty-two asthmatics ages 9-46 years were followed for 8 weeks (9 May-3 July 1994) in a semirural Southern California community around the air inversion base elevation (1,200 ft). Daily diary responses included asthma symptom severity (6 levels), morning and evening peak expiratory flow rates (PEFR), and as-needed beta-agonist inhaler use. Exposures included 24-hr outdoor concentrations of fungi, pollen, and particulate matter with a diameter < 10 microns (PM10; maximum = 51 micrograms/m3) and 12-hour day-time personal ozone (O3) measurements (90th percentile = 38 ppb). Random effects longitudinal regression models controlled for autocorrelation and weather. Higher temperatures were strongly protective, probably due to air conditioning use and diminished indoor allergens during hot, dry periods. Controlling for weather, total fungal spore concentrations were associated with all outcomes: per minimum to 90th percentile increase of nearly 4,000 spores/m3, asthma symptom scores increased 0.36 (95% CI, 0.16-0.56), inhaler use increased 0.33 puffs (95% CI, -0.02-0.69), and evening PEFR decreased 12.1 l/min (95% CI, -1.8-22.3). These associations were greatly enhanced by examining certain fungal types (e.g., Alternaria, basidiospores, and hyphal fragments) and stratifying on 16 asthmatics allergic to tested deuteromycete fungi. There were no significant associations to low levels of pollen or O3, but inhaler use was associated with PM10 (0.15 inhaler puffs/10 micrograms/m3; p < 0.02). These findings suggest that exposure to fungal spores can adversely effect the daily respiratory status of some asthmatics. 1997-06 /pmc/articles/PMC1470068/ /pubmed/9288497 Text en
spellingShingle Research Article
Delfino, R J
Zeiger, R S
Seltzer, J M
Street, D H
Matteucci, R M
Anderson, P R
Koutrakis, P
The effect of outdoor fungal spore concentrations on daily asthma severity.
title The effect of outdoor fungal spore concentrations on daily asthma severity.
title_full The effect of outdoor fungal spore concentrations on daily asthma severity.
title_fullStr The effect of outdoor fungal spore concentrations on daily asthma severity.
title_full_unstemmed The effect of outdoor fungal spore concentrations on daily asthma severity.
title_short The effect of outdoor fungal spore concentrations on daily asthma severity.
title_sort effect of outdoor fungal spore concentrations on daily asthma severity.
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1470068/
https://www.ncbi.nlm.nih.gov/pubmed/9288497
work_keys_str_mv AT delfinorj theeffectofoutdoorfungalsporeconcentrationsondailyasthmaseverity
AT zeigerrs theeffectofoutdoorfungalsporeconcentrationsondailyasthmaseverity
AT seltzerjm theeffectofoutdoorfungalsporeconcentrationsondailyasthmaseverity
AT streetdh theeffectofoutdoorfungalsporeconcentrationsondailyasthmaseverity
AT matteuccirm theeffectofoutdoorfungalsporeconcentrationsondailyasthmaseverity
AT andersonpr theeffectofoutdoorfungalsporeconcentrationsondailyasthmaseverity
AT koutrakisp theeffectofoutdoorfungalsporeconcentrationsondailyasthmaseverity
AT delfinorj effectofoutdoorfungalsporeconcentrationsondailyasthmaseverity
AT zeigerrs effectofoutdoorfungalsporeconcentrationsondailyasthmaseverity
AT seltzerjm effectofoutdoorfungalsporeconcentrationsondailyasthmaseverity
AT streetdh effectofoutdoorfungalsporeconcentrationsondailyasthmaseverity
AT matteuccirm effectofoutdoorfungalsporeconcentrationsondailyasthmaseverity
AT andersonpr effectofoutdoorfungalsporeconcentrationsondailyasthmaseverity
AT koutrakisp effectofoutdoorfungalsporeconcentrationsondailyasthmaseverity