Cargando…

Fluorescence imaging of reactive oxygen metabolites generated in single macrophage cells (NR8383) upon phagocytosis of natural zeolite (erionite) fibers.

In this paper we address the phenomenon of reactive oxygen metabolite generation subsequent to phagocytosis of mineral fibers by macrophages. Natural erionite fibers were chosen because of their established toxicity. Macrophages (cell line NR8383) were loaded with the dye 5-(and 6)-carboxy-2',7...

Descripción completa

Detalles Bibliográficos
Autores principales: Long, J F, Dutta, P K, Hogg, B D
Formato: Texto
Lenguaje:English
Publicado: 1997
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1470100/
https://www.ncbi.nlm.nih.gov/pubmed/9294716
_version_ 1782127754231152640
author Long, J F
Dutta, P K
Hogg, B D
author_facet Long, J F
Dutta, P K
Hogg, B D
author_sort Long, J F
collection PubMed
description In this paper we address the phenomenon of reactive oxygen metabolite generation subsequent to phagocytosis of mineral fibers by macrophages. Natural erionite fibers were chosen because of their established toxicity. Macrophages (cell line NR8383) were loaded with the dye 5-(and 6)-carboxy-2',7'-dichlorodihydrofluorescein diacetate and exposed to erionite particles by centrifuging cells and fibers together to effect adherence. Reactive oxygen metabolite generation was examined by monitoring the fluorescence of oxidized dye formed via the reaction with oxygen species produced during phagocytosis. Individual cells were repeatedly scanned for up to 2 hr to monitor the evolution of this fluorescence. It was found that erionite-exposed cells had a mean total fluorescence of three times that of controls during the first 35 min, declining to two times that of controls at 35-60 min and about the same level as that of controls at 60-80 min. Ultrastructural studies of similarly treated aliquots of cells showed marked variation in size and numbers of the phagocytized particles. This study demonstrates that intracellular oxidation can be monitored on a single cell basis over a period of time. Quantitative studies are in progress to establish the relationship between the phagocytized particulate load and the extent of fluorescence.
format Text
id pubmed-1470100
institution National Center for Biotechnology Information
language English
publishDate 1997
record_format MEDLINE/PubMed
spelling pubmed-14701002006-06-01 Fluorescence imaging of reactive oxygen metabolites generated in single macrophage cells (NR8383) upon phagocytosis of natural zeolite (erionite) fibers. Long, J F Dutta, P K Hogg, B D Environ Health Perspect Research Article In this paper we address the phenomenon of reactive oxygen metabolite generation subsequent to phagocytosis of mineral fibers by macrophages. Natural erionite fibers were chosen because of their established toxicity. Macrophages (cell line NR8383) were loaded with the dye 5-(and 6)-carboxy-2',7'-dichlorodihydrofluorescein diacetate and exposed to erionite particles by centrifuging cells and fibers together to effect adherence. Reactive oxygen metabolite generation was examined by monitoring the fluorescence of oxidized dye formed via the reaction with oxygen species produced during phagocytosis. Individual cells were repeatedly scanned for up to 2 hr to monitor the evolution of this fluorescence. It was found that erionite-exposed cells had a mean total fluorescence of three times that of controls during the first 35 min, declining to two times that of controls at 35-60 min and about the same level as that of controls at 60-80 min. Ultrastructural studies of similarly treated aliquots of cells showed marked variation in size and numbers of the phagocytized particles. This study demonstrates that intracellular oxidation can be monitored on a single cell basis over a period of time. Quantitative studies are in progress to establish the relationship between the phagocytized particulate load and the extent of fluorescence. 1997-07 /pmc/articles/PMC1470100/ /pubmed/9294716 Text en
spellingShingle Research Article
Long, J F
Dutta, P K
Hogg, B D
Fluorescence imaging of reactive oxygen metabolites generated in single macrophage cells (NR8383) upon phagocytosis of natural zeolite (erionite) fibers.
title Fluorescence imaging of reactive oxygen metabolites generated in single macrophage cells (NR8383) upon phagocytosis of natural zeolite (erionite) fibers.
title_full Fluorescence imaging of reactive oxygen metabolites generated in single macrophage cells (NR8383) upon phagocytosis of natural zeolite (erionite) fibers.
title_fullStr Fluorescence imaging of reactive oxygen metabolites generated in single macrophage cells (NR8383) upon phagocytosis of natural zeolite (erionite) fibers.
title_full_unstemmed Fluorescence imaging of reactive oxygen metabolites generated in single macrophage cells (NR8383) upon phagocytosis of natural zeolite (erionite) fibers.
title_short Fluorescence imaging of reactive oxygen metabolites generated in single macrophage cells (NR8383) upon phagocytosis of natural zeolite (erionite) fibers.
title_sort fluorescence imaging of reactive oxygen metabolites generated in single macrophage cells (nr8383) upon phagocytosis of natural zeolite (erionite) fibers.
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1470100/
https://www.ncbi.nlm.nih.gov/pubmed/9294716
work_keys_str_mv AT longjf fluorescenceimagingofreactiveoxygenmetabolitesgeneratedinsinglemacrophagecellsnr8383uponphagocytosisofnaturalzeoliteerionitefibers
AT duttapk fluorescenceimagingofreactiveoxygenmetabolitesgeneratedinsinglemacrophagecellsnr8383uponphagocytosisofnaturalzeoliteerionitefibers
AT hoggbd fluorescenceimagingofreactiveoxygenmetabolitesgeneratedinsinglemacrophagecellsnr8383uponphagocytosisofnaturalzeoliteerionitefibers