Cargando…
Exploring supervised and unsupervised methods to detect topics in biomedical text
BACKGROUND: Topic detection is a task that automatically identifies topics (e.g., "biochemistry" and "protein structure") in scientific articles based on information content. Topic detection will benefit many other natural language processing tasks including information retrieval...
Autores principales: | Lee, Minsuk, Wang, Weiqing, Yu, Hong |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2006
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1472693/ https://www.ncbi.nlm.nih.gov/pubmed/16539745 http://dx.doi.org/10.1186/1471-2105-7-140 |
Ejemplares similares
-
An Unsupervised Text Mining Method for Relation Extraction from Biomedical Literature
por: Quan, Changqin, et al.
Publicado: (2014) -
Exploring Sources of Satisfaction and Dissatisfaction in Airbnb Accommodation Using Unsupervised and Supervised Topic Modeling
por: Ding, Kai, et al.
Publicado: (2021) -
Automated lesion detection on MRI scans using combined unsupervised and supervised methods
por: Guo, Dazhou, et al.
Publicado: (2015) -
Automated Object Detection in Experimental Data Using Combination of Unsupervised and Supervised Methods
por: Wu, Yiran, et al.
Publicado: (2022) -
Fast max-margin clustering for unsupervised word sense disambiguation in biomedical texts
por: Duan, Weisi, et al.
Publicado: (2009)