Cargando…

New, extended hairpin form of the TAR-2 RNA domain points to the structural polymorphism at the 5′ end of the HIV-2 leader RNA

The HIV-2 TAR RNA domain (TAR-2) plays a key role in the trans-activation of HIV-2 transcription as it is the target for the Tat-2 protein and several cell factors. Here, we show that the TAR-2 domain exists in vitro in two global, alternative forms: a new, extended hairpin form with two conformers...

Descripción completa

Detalles Bibliográficos
Autores principales: Pachulska-Wieczorek, Katarzyna, Purzycka, Katarzyna J., Adamiak, Ryszard W.
Formato: Texto
Lenguaje:English
Publicado: Oxford University Press 2006
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1474061/
https://www.ncbi.nlm.nih.gov/pubmed/16738137
http://dx.doi.org/10.1093/nar/gkl373
Descripción
Sumario:The HIV-2 TAR RNA domain (TAR-2) plays a key role in the trans-activation of HIV-2 transcription as it is the target for the Tat-2 protein and several cell factors. Here, we show that the TAR-2 domain exists in vitro in two global, alternative forms: a new, extended hairpin form with two conformers and the already proposed branched hairpins form. This points strongly to the structural polymorphism of the 5′ end of the HIV-2 leader RNA. The evidence comes from the non-denaturing PAGE mobility assay, 2D structure prediction, enzymatic and Pb(2+)- or Mg(2+)-induced RNA cleavages. Existence of the TAR-2 extended form was further proved by the examination of engineered TAR-2 mutants stabilized either in the branched or extended structure. The TAR-2 extended form predominates with an increasing magnesium concentration. Gel retardation assays reveal that both TAR-2 wt and its mutant, unable to form branched structure, bind Tat-2 protein with comparable, high affinity, while RNA hairpins I and II, derived from TAR-2 branched structure model, show much less protein binding. We propose that an internal loop region of the TAR-2 extended hairpin form is a potential Tat-2 binding site.