Cargando…

Small animals in the study of pathological effects of asbestos

The main pathological effects attributed to asbestos are carcinogenesis and fibrogenesis. Statistical studies have shown that asbestos workers may expect a higher morbidity not only from cancer of the lung and mesothelioma but also from cancer at other sites. Carcinomas have been reported in animals...

Descripción completa

Detalles Bibliográficos
Autor principal: Holt, Paul F.
Formato: Texto
Lenguaje:English
Publicado: 1974
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1475401/
https://www.ncbi.nlm.nih.gov/pubmed/4377872
_version_ 1782128096322781184
author Holt, Paul F.
author_facet Holt, Paul F.
author_sort Holt, Paul F.
collection PubMed
description The main pathological effects attributed to asbestos are carcinogenesis and fibrogenesis. Statistical studies have shown that asbestos workers may expect a higher morbidity not only from cancer of the lung and mesothelioma but also from cancer at other sites. Carcinomas have been reported in animals following the injection of asbestos, but the production of carcinomas by inhaled asbestos is less easy to demonstrate; most examples of experimental carcinogenesis with asbestos have been produced in rats. Rats and man react differently to asbestos in that rats do not produce asbestos bodies. The fibrosis that follows inhalation of asbestos has been frequently described, but studies with specific pathogen free animals have shown that, like the fibrosis that may follow the inhalation of silica dust, gross fibrosis involving the production of abnormal amount of collagen probably requires the intervention of infection as well as asbestos. Because of the difficulties encountered in the direct investigation of carcinogenesis and fibrogenesis resulting from the inhalation of asbestos, attention has been directed to the mechanisms by which the lung is able to protect itself against these fibrous dusts. While non-fibrous dusts and short fibers can be ingested by macrophages and removed via the bronchus, the long fibers that may also reach the alveolar regions may not be removed by this mechanism. The probability that a fiber may reach the alveoli depends largely on the fiber diameter and only to a small extent on the fiber length, so that, for example, fibers 100 μm long may reach the alveoli of a guinea pig. These long fibers may become coated with a ferroprotein derived from hemoglobin to form an asbestos body and, after morphological changes, the asbestos body may be broken up, the fragments ingested by macrophages and dissolved. The lung is thus cleared of asbestos. In the guinea pig lung, consolidated areas from which the asbestos has disappeared shows signs of return to normal. This clearance mechanism is inhibited by other factors: quartz dust may almost completely inhibit asbestos body formation; tobacco smoke has a considerable effect, and even very heavy loads of carbon may act similarly. The normal lung appears able to efficiently eliminate small loads of both nonfibrous and fibrous dust, including the carcinogenic asbestos fibers. The capacity is not unlimited, however, and when the load is heavy there is a much greater probability that fibers will not be detoxicated. In addition, other factors such as silica dust and tobacco smoke may remove the protective mechanism in the lungs.
format Text
id pubmed-1475401
institution National Center for Biotechnology Information
language English
publishDate 1974
record_format MEDLINE/PubMed
spelling pubmed-14754012006-06-09 Small animals in the study of pathological effects of asbestos Holt, Paul F. Environ Health Perspect Articles The main pathological effects attributed to asbestos are carcinogenesis and fibrogenesis. Statistical studies have shown that asbestos workers may expect a higher morbidity not only from cancer of the lung and mesothelioma but also from cancer at other sites. Carcinomas have been reported in animals following the injection of asbestos, but the production of carcinomas by inhaled asbestos is less easy to demonstrate; most examples of experimental carcinogenesis with asbestos have been produced in rats. Rats and man react differently to asbestos in that rats do not produce asbestos bodies. The fibrosis that follows inhalation of asbestos has been frequently described, but studies with specific pathogen free animals have shown that, like the fibrosis that may follow the inhalation of silica dust, gross fibrosis involving the production of abnormal amount of collagen probably requires the intervention of infection as well as asbestos. Because of the difficulties encountered in the direct investigation of carcinogenesis and fibrogenesis resulting from the inhalation of asbestos, attention has been directed to the mechanisms by which the lung is able to protect itself against these fibrous dusts. While non-fibrous dusts and short fibers can be ingested by macrophages and removed via the bronchus, the long fibers that may also reach the alveolar regions may not be removed by this mechanism. The probability that a fiber may reach the alveoli depends largely on the fiber diameter and only to a small extent on the fiber length, so that, for example, fibers 100 μm long may reach the alveoli of a guinea pig. These long fibers may become coated with a ferroprotein derived from hemoglobin to form an asbestos body and, after morphological changes, the asbestos body may be broken up, the fragments ingested by macrophages and dissolved. The lung is thus cleared of asbestos. In the guinea pig lung, consolidated areas from which the asbestos has disappeared shows signs of return to normal. This clearance mechanism is inhibited by other factors: quartz dust may almost completely inhibit asbestos body formation; tobacco smoke has a considerable effect, and even very heavy loads of carbon may act similarly. The normal lung appears able to efficiently eliminate small loads of both nonfibrous and fibrous dust, including the carcinogenic asbestos fibers. The capacity is not unlimited, however, and when the load is heavy there is a much greater probability that fibers will not be detoxicated. In addition, other factors such as silica dust and tobacco smoke may remove the protective mechanism in the lungs. 1974-12 /pmc/articles/PMC1475401/ /pubmed/4377872 Text en
spellingShingle Articles
Holt, Paul F.
Small animals in the study of pathological effects of asbestos
title Small animals in the study of pathological effects of asbestos
title_full Small animals in the study of pathological effects of asbestos
title_fullStr Small animals in the study of pathological effects of asbestos
title_full_unstemmed Small animals in the study of pathological effects of asbestos
title_short Small animals in the study of pathological effects of asbestos
title_sort small animals in the study of pathological effects of asbestos
topic Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1475401/
https://www.ncbi.nlm.nih.gov/pubmed/4377872
work_keys_str_mv AT holtpaulf smallanimalsinthestudyofpathologicaleffectsofasbestos