Cargando…
Histone H3.3 Variant Dynamics in the Germline of Caenorhabditis elegans
Germline chromatin undergoes dramatic remodeling events involving histone variants during the life cycle of an organism. A universal histone variant, H3.3, is incorporated at sites of active transcription throughout the cell cycle. The presence of H3.3 in chromatin indicates histone turnover, which...
Autores principales: | , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2006
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1484599/ https://www.ncbi.nlm.nih.gov/pubmed/16846252 http://dx.doi.org/10.1371/journal.pgen.0020097 |
_version_ | 1782128338175787008 |
---|---|
author | Ooi, Siew Loon Priess, James R Henikoff, Steven |
author_facet | Ooi, Siew Loon Priess, James R Henikoff, Steven |
author_sort | Ooi, Siew Loon |
collection | PubMed |
description | Germline chromatin undergoes dramatic remodeling events involving histone variants during the life cycle of an organism. A universal histone variant, H3.3, is incorporated at sites of active transcription throughout the cell cycle. The presence of H3.3 in chromatin indicates histone turnover, which is the energy-dependent removal of preexisting histones and replacement with new histones. H3.3 is also incorporated during decondensation of the Drosophila sperm pronucleus, indicating a direct role in chromatin remodeling upon fertilization. Here we present a system to monitor histone turnover and chromatin remodeling during Caenorhabditis elegans development by following the developmental dynamics of H3.3. We generated worm strains expressing green fluorescent protein– or yellow fluorescent protein–fused histone H3.3 proteins, HIS-71 and HIS-72. We found that H3.3 is retained in mature sperm chromatin, raising the possibility that it transmits epigenetic information via the male germline. Upon fertilization, maternal H3.3 enters both male and female pronuclei and is incorporated into paternal chromatin, apparently before the onset of embryonic transcription, suggesting that H3.3 can be incorporated independent of transcription. In early embryos, H3.3 becomes specifically depleted from primordial germ cells. Strikingly, the X chromosome becomes deficient in H3.3 during gametogenesis, indicating a low level of histone turnover. These results raise the possibility that the asymmetry in histone turnover between the X chromosome and autosomes is established during gametogenesis. H3.3 patterns are similar to patterns of H3K4 methylation in the primordial germ cells and on the X chromosome during gametogenesis, suggesting that histone turnover and modification are coupled processes. Our demonstration of dynamic H3.3 incorporation in nondividing cells provides a mechanistic basis for chromatin changes during germ cell development. |
format | Text |
id | pubmed-1484599 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2006 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-14845992006-07-07 Histone H3.3 Variant Dynamics in the Germline of Caenorhabditis elegans Ooi, Siew Loon Priess, James R Henikoff, Steven PLoS Genet Research Article Germline chromatin undergoes dramatic remodeling events involving histone variants during the life cycle of an organism. A universal histone variant, H3.3, is incorporated at sites of active transcription throughout the cell cycle. The presence of H3.3 in chromatin indicates histone turnover, which is the energy-dependent removal of preexisting histones and replacement with new histones. H3.3 is also incorporated during decondensation of the Drosophila sperm pronucleus, indicating a direct role in chromatin remodeling upon fertilization. Here we present a system to monitor histone turnover and chromatin remodeling during Caenorhabditis elegans development by following the developmental dynamics of H3.3. We generated worm strains expressing green fluorescent protein– or yellow fluorescent protein–fused histone H3.3 proteins, HIS-71 and HIS-72. We found that H3.3 is retained in mature sperm chromatin, raising the possibility that it transmits epigenetic information via the male germline. Upon fertilization, maternal H3.3 enters both male and female pronuclei and is incorporated into paternal chromatin, apparently before the onset of embryonic transcription, suggesting that H3.3 can be incorporated independent of transcription. In early embryos, H3.3 becomes specifically depleted from primordial germ cells. Strikingly, the X chromosome becomes deficient in H3.3 during gametogenesis, indicating a low level of histone turnover. These results raise the possibility that the asymmetry in histone turnover between the X chromosome and autosomes is established during gametogenesis. H3.3 patterns are similar to patterns of H3K4 methylation in the primordial germ cells and on the X chromosome during gametogenesis, suggesting that histone turnover and modification are coupled processes. Our demonstration of dynamic H3.3 incorporation in nondividing cells provides a mechanistic basis for chromatin changes during germ cell development. Public Library of Science 2006-06 2006-06-30 /pmc/articles/PMC1484599/ /pubmed/16846252 http://dx.doi.org/10.1371/journal.pgen.0020097 Text en © 2006 Ooi et al. http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited. |
spellingShingle | Research Article Ooi, Siew Loon Priess, James R Henikoff, Steven Histone H3.3 Variant Dynamics in the Germline of Caenorhabditis elegans |
title | Histone H3.3 Variant Dynamics in the Germline of Caenorhabditis elegans
|
title_full | Histone H3.3 Variant Dynamics in the Germline of Caenorhabditis elegans
|
title_fullStr | Histone H3.3 Variant Dynamics in the Germline of Caenorhabditis elegans
|
title_full_unstemmed | Histone H3.3 Variant Dynamics in the Germline of Caenorhabditis elegans
|
title_short | Histone H3.3 Variant Dynamics in the Germline of Caenorhabditis elegans
|
title_sort | histone h3.3 variant dynamics in the germline of caenorhabditis elegans |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1484599/ https://www.ncbi.nlm.nih.gov/pubmed/16846252 http://dx.doi.org/10.1371/journal.pgen.0020097 |
work_keys_str_mv | AT ooisiewloon histoneh33variantdynamicsinthegermlineofcaenorhabditiselegans AT priessjamesr histoneh33variantdynamicsinthegermlineofcaenorhabditiselegans AT henikoffsteven histoneh33variantdynamicsinthegermlineofcaenorhabditiselegans |