Cargando…
Structural proteomics of minimal organisms: Conservation of protein fold usage and evolutionary implications
BACKGROUND: Determining the complete repertoire of protein structures for all soluble, globular proteins in a single organism has been one of the major goals of several structural genomics projects in recent years. RESULTS: We report that this goal has nearly been reached for several "minimal o...
Autores principales: | , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2006
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1488858/ https://www.ncbi.nlm.nih.gov/pubmed/16566839 http://dx.doi.org/10.1186/1472-6807-6-7 |
_version_ | 1782128349626236928 |
---|---|
author | Chandonia, John-Marc Kim, Sung-Hou |
author_facet | Chandonia, John-Marc Kim, Sung-Hou |
author_sort | Chandonia, John-Marc |
collection | PubMed |
description | BACKGROUND: Determining the complete repertoire of protein structures for all soluble, globular proteins in a single organism has been one of the major goals of several structural genomics projects in recent years. RESULTS: We report that this goal has nearly been reached for several "minimal organisms" – parasites or symbionts with reduced genomes – for which over 95% of the soluble, globular proteins may now be assigned folds, overall 3-D backbone structures. We analyze the structures of these proteins as they relate to cellular functions, and compare conservation of fold usage between functional categories. We also compare patterns in the conservation of folds among minimal organisms and those observed between minimal organisms and other bacteria. CONCLUSION: We find that proteins performing essential cellular functions closely related to transcription and translation exhibit a higher degree of conservation in fold usage than proteins in other functional categories. Folds related to transcription and translation functional categories were also overrepresented in minimal organisms compared to other bacteria. |
format | Text |
id | pubmed-1488858 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2006 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-14888582006-07-10 Structural proteomics of minimal organisms: Conservation of protein fold usage and evolutionary implications Chandonia, John-Marc Kim, Sung-Hou BMC Struct Biol Research Article BACKGROUND: Determining the complete repertoire of protein structures for all soluble, globular proteins in a single organism has been one of the major goals of several structural genomics projects in recent years. RESULTS: We report that this goal has nearly been reached for several "minimal organisms" – parasites or symbionts with reduced genomes – for which over 95% of the soluble, globular proteins may now be assigned folds, overall 3-D backbone structures. We analyze the structures of these proteins as they relate to cellular functions, and compare conservation of fold usage between functional categories. We also compare patterns in the conservation of folds among minimal organisms and those observed between minimal organisms and other bacteria. CONCLUSION: We find that proteins performing essential cellular functions closely related to transcription and translation exhibit a higher degree of conservation in fold usage than proteins in other functional categories. Folds related to transcription and translation functional categories were also overrepresented in minimal organisms compared to other bacteria. BioMed Central 2006-03-28 /pmc/articles/PMC1488858/ /pubmed/16566839 http://dx.doi.org/10.1186/1472-6807-6-7 Text en Copyright © 2006 Chandonia and Kim; licensee BioMed Central Ltd. http://creativecommons.org/licenses/by/2.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( (http://creativecommons.org/licenses/by/2.0) ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Article Chandonia, John-Marc Kim, Sung-Hou Structural proteomics of minimal organisms: Conservation of protein fold usage and evolutionary implications |
title | Structural proteomics of minimal organisms: Conservation of protein fold usage and evolutionary implications |
title_full | Structural proteomics of minimal organisms: Conservation of protein fold usage and evolutionary implications |
title_fullStr | Structural proteomics of minimal organisms: Conservation of protein fold usage and evolutionary implications |
title_full_unstemmed | Structural proteomics of minimal organisms: Conservation of protein fold usage and evolutionary implications |
title_short | Structural proteomics of minimal organisms: Conservation of protein fold usage and evolutionary implications |
title_sort | structural proteomics of minimal organisms: conservation of protein fold usage and evolutionary implications |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1488858/ https://www.ncbi.nlm.nih.gov/pubmed/16566839 http://dx.doi.org/10.1186/1472-6807-6-7 |
work_keys_str_mv | AT chandoniajohnmarc structuralproteomicsofminimalorganismsconservationofproteinfoldusageandevolutionaryimplications AT kimsunghou structuralproteomicsofminimalorganismsconservationofproteinfoldusageandevolutionaryimplications |