Cargando…
A graphical model approach to automated classification of protein subcellular location patterns in multi-cell images
BACKGROUND: Knowledge of the subcellular location of a protein is critical to understanding how that protein works in a cell. This location is frequently determined by the interpretation of fluorescence microscope images. In recent years, automated systems have been developed for consistent and obje...
Autores principales: | Chen, Shann-Ching, Murphy, Robert F |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2006
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1489953/ https://www.ncbi.nlm.nih.gov/pubmed/16504075 http://dx.doi.org/10.1186/1471-2105-7-90 |
Ejemplares similares
-
A multiresolution approach to automated classification of protein subcellular location images
por: Chebira, Amina, et al.
Publicado: (2007) -
Protein subcellular location pattern classification in cellular images using latent discriminative models
por: Li, Jieyue, et al.
Publicado: (2012) -
LocateP: Genome-scale subcellular-location predictor for bacterial proteins
por: Zhou, Miaomiao, et al.
Publicado: (2008) -
Automated Analysis and Reannotation of Subcellular Locations in Confocal Images from the Human Protein Atlas
por: Li, Jieyue, et al.
Publicado: (2012) -
A novel approach for protein subcellular location prediction using amino acid exposure
por: Mer, Arvind Singh, et al.
Publicado: (2013)