Cargando…
Genomic data sampling and its effect on classification performance assessment
BACKGROUND: Supervised classification is fundamental in bioinformatics. Machine learning models, such as neural networks, have been applied to discover genes and expression patterns. This process is achieved by implementing training and test phases. In the training phase, a set of cases and their re...
Autor principal: | Azuaje, Francisco |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2003
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC149349/ https://www.ncbi.nlm.nih.gov/pubmed/12553886 http://dx.doi.org/10.1186/1471-2105-4-5 |
Ejemplares similares
-
Advancing Post-Genome Data and System Integration Through Machine Learning
por: Azuaje, Francisco
Publicado: (2002) -
An assessment of recently published gene expression data analyses: reporting experimental design and statistical factors
por: Jafari, Peyman, et al.
Publicado: (2006) -
Is Bagging Effective in the Classification of Small-Sample Genomic and Proteomic Data?
por: Vu, TT, et al.
Publicado: (2009) -
Non-linear mapping for exploratory data analysis in functional genomics
por: Azuaje, Francisco, et al.
Publicado: (2005) -
Review of "Mining Imperfect Data" by Ronald K. Pearson
por: Azuaje, Francisco
Publicado: (2005)