Cargando…
Susceptibility patterns and cross resistances of antibiotics against Pseudomonas aeruginosa in a teaching hospital of Turkey
BACKGROUND: Pseudomonas aeruginosa is the third most common pathogen responsible for nosocomial infections and the prevalence of multiple resistant isolates has been increasing. Ninety-nine clinical isolates were studied in order to assess the current levels of susceptibility and cross-resistances o...
Autores principales: | , , , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2002
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC149377/ https://www.ncbi.nlm.nih.gov/pubmed/12437779 http://dx.doi.org/10.1186/1476-0711-1-2 |
Sumario: | BACKGROUND: Pseudomonas aeruginosa is the third most common pathogen responsible for nosocomial infections and the prevalence of multiple resistant isolates has been increasing. Ninety-nine clinical isolates were studied in order to assess the current levels of susceptibility and cross-resistances of widely used antipseudomonal antibiotics against P. aeruginosa and to determine some resistance mechanisms by phenotypic methods. METHODS: MICs of isolates for nine antipseudomonal antibiotics were determined by the E test method. RESULTS: Thirty-six percent of isolates were resistant to more than one group of antibiotics. The rates of susceptible isolates were ciprofloxacin 75%, amikacin 73%, ceftazidime 65%, meropenem 63%, imipenem 63%, piperacillin/tazobactam 60%, cefoperazone/sulbactam 59%, cefepime 54% and tobramycin 44%. The majority of carbapenem resistant isolates were susceptible to ciprofloxacin and amikacin. CONCLUSION: Ciprofloxacin seems to be the most active agent against P. aeruginosa followed by amikacin in our unit. The usefulness of combinations of these antibiotics and β-lactams should be tested in treating multi-drug resistant P. aeruginosa. |
---|