Cargando…
Mining gene expression data by interpreting principal components
BACKGROUND: There are many methods for analyzing microarray data that group together genes having similar patterns of expression over all conditions tested. However, in many instances the biologically important goal is to identify relatively small sets of genes that share coherent expression across...
Autores principales: | Roden, Joseph C, King, Brandon W, Trout, Diane, Mortazavi, Ali, Wold, Barbara J, Hart, Christopher E |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2006
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1501050/ https://www.ncbi.nlm.nih.gov/pubmed/16600052 http://dx.doi.org/10.1186/1471-2105-7-194 |
Ejemplares similares
-
FastPop: a rapid principal component derived method to infer intercontinental ancestry using genetic data
por: Li, Yafang, et al.
Publicado: (2016) -
ERStruct: a fast Python package for inferring the number of top principal components from whole genome sequencing data
por: Yang, Jinghan, et al.
Publicado: (2023) -
ALDsuite: Dense marker MALD using principal components of ancestral linkage disequilibrium
por: Johnson, Randall C, et al.
Publicado: (2015) -
pcaExplorer: an R/Bioconductor package for interacting with RNA-seq principal components
por: Marini, Federico, et al.
Publicado: (2019) -
A mathematical and computational framework for quantitative comparison and integration of large-scale gene expression data
por: Hart, Christopher E., et al.
Publicado: (2005)