Cargando…
Biological Pacemakers
Genetically engineered pacemakers could be a possible alternative to implantable electronic devices for the treatment of bradyarrhythmias. The strategies include upregulation of beta adrenergic receptors, conversion of myocytes into pacemaker cells and stem cell therapy. Pacemaker activity in adult...
Autores principales: | , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
Indian Pacing and Electrophysiology Group
2006
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1501094/ https://www.ncbi.nlm.nih.gov/pubmed/16943888 |
_version_ | 1782128407556915200 |
---|---|
author | Rajesh, G Francis, Johnson |
author_facet | Rajesh, G Francis, Johnson |
author_sort | Rajesh, G |
collection | PubMed |
description | Genetically engineered pacemakers could be a possible alternative to implantable electronic devices for the treatment of bradyarrhythmias. The strategies include upregulation of beta adrenergic receptors, conversion of myocytes into pacemaker cells and stem cell therapy. Pacemaker activity in adult ventricular myocytes is normally repressed by the inward rectifier potassium current (I(K1)). The I(K1) current is encoded by the Kir2 gene family. Use of a negative construct that suppresses current when expressed with wild-type Kir2.1 is an experimental approach for genesis of genetic pacemaker. Hyperpolarisation activated cyclic nucleotide gated (HCN) channels which generate If current, the pacemaker current of heart can be delivered to heart by using stem cell therapy approach and viral vectors. The unresolved issues include longevity and stability of pacemaker genes, limitations involved in adenoviral and stem cell therapy and creation of genetic pacemakers which can compete with the electronic units. |
format | Text |
id | pubmed-1501094 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2006 |
publisher | Indian Pacing and Electrophysiology Group |
record_format | MEDLINE/PubMed |
spelling | pubmed-15010942006-08-29 Biological Pacemakers Rajesh, G Francis, Johnson Indian Pacing Electrophysiol J Editorial Genetically engineered pacemakers could be a possible alternative to implantable electronic devices for the treatment of bradyarrhythmias. The strategies include upregulation of beta adrenergic receptors, conversion of myocytes into pacemaker cells and stem cell therapy. Pacemaker activity in adult ventricular myocytes is normally repressed by the inward rectifier potassium current (I(K1)). The I(K1) current is encoded by the Kir2 gene family. Use of a negative construct that suppresses current when expressed with wild-type Kir2.1 is an experimental approach for genesis of genetic pacemaker. Hyperpolarisation activated cyclic nucleotide gated (HCN) channels which generate If current, the pacemaker current of heart can be delivered to heart by using stem cell therapy approach and viral vectors. The unresolved issues include longevity and stability of pacemaker genes, limitations involved in adenoviral and stem cell therapy and creation of genetic pacemakers which can compete with the electronic units. Indian Pacing and Electrophysiology Group 2006-01-01 /pmc/articles/PMC1501094/ /pubmed/16943888 Text en Copyright: © 2006 Rajesh et al. http://creativecommons.org/licenses/by/2.5/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Editorial Rajesh, G Francis, Johnson Biological Pacemakers |
title | Biological Pacemakers |
title_full | Biological Pacemakers |
title_fullStr | Biological Pacemakers |
title_full_unstemmed | Biological Pacemakers |
title_short | Biological Pacemakers |
title_sort | biological pacemakers |
topic | Editorial |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1501094/ https://www.ncbi.nlm.nih.gov/pubmed/16943888 |
work_keys_str_mv | AT rajeshg biologicalpacemakers AT francisjohnson biologicalpacemakers |