Cargando…

Fold-recognition and comparative modeling of human α2,3-sialyltransferases reveal their sequence and structural similarities to CstII from Campylobacter jejuni

BACKGROUND: The 3-D structure of none of the eukaryotic sialyltransferases (SiaTs) has been determined so far. Sequence alignment algorithms such as BLAST and PSI-BLAST could not detect a homolog of these enzymes from the protein databank. SiaTs, thus, belong to the hard/medium target category in th...

Descripción completa

Detalles Bibliográficos
Autores principales: Sujatha, MS, Balaji, Petety V
Formato: Texto
Lenguaje:English
Publicado: BioMed Central 2006
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1508147/
https://www.ncbi.nlm.nih.gov/pubmed/16620397
http://dx.doi.org/10.1186/1472-6807-6-9
_version_ 1782128433151606784
author Sujatha, MS
Balaji, Petety V
author_facet Sujatha, MS
Balaji, Petety V
author_sort Sujatha, MS
collection PubMed
description BACKGROUND: The 3-D structure of none of the eukaryotic sialyltransferases (SiaTs) has been determined so far. Sequence alignment algorithms such as BLAST and PSI-BLAST could not detect a homolog of these enzymes from the protein databank. SiaTs, thus, belong to the hard/medium target category in the CASP experiments. The objective of the current work is to model the 3-D structures of human SiaTs which transfer the sialic acid in α2,3-linkage viz., ST3Gal I, II, III, IV, V, and VI, using fold-recognition and comparative modeling methods. The pair-wise sequence similarity among these six enzymes ranges from 41 to 63%. RESULTS: Unlike the sequence similarity servers, fold-recognition servers identified CstII, a α2,3/8 dual-activity SiaT from Campylobacter jejuni as the homolog of all the six ST3Gals; the level of sequence similarity between CstII and ST3Gals is only 15–20% and the similarity is restricted to well-characterized motif regions of ST3Gals. Deriving template-target sequence alignments for the entire ST3Gal sequence was not straightforward: the fold-recognition servers could not find a template for the region preceding the L-motif and that between the L- and S-motifs. Multiple structural templates were identified to model these regions and template identification-modeling-evaluation had to be performed iteratively to choose the most appropriate templates. The modeled structures have acceptable stereochemical properties and are also able to provide qualitative rationalizations for some of the site-directed mutagenesis results reported in literature. Apart from the predicted models, an unexpected but valuable finding from this study is the sequential and structural relatedness of family GT42 and family GT29 SiaTs. CONCLUSION: The modeled 3-D structures can be used for docking and other modeling studies and for the rational identification of residues to be mutated to impart desired properties such as altered stability, substrate specificity, etc. Several studies in literature have focused on the development of tools and/or servers for the large-scale/automated modeling of 3-D structures of proteins. In contrast, the present study focuses on modeling the 3-D structure of a specific protein of interest to a biochemist and illustrates the associated difficulties. It is also able to establish a sequence/structure relationship between sialyltransferases of two distinct families.
format Text
id pubmed-1508147
institution National Center for Biotechnology Information
language English
publishDate 2006
publisher BioMed Central
record_format MEDLINE/PubMed
spelling pubmed-15081472006-07-15 Fold-recognition and comparative modeling of human α2,3-sialyltransferases reveal their sequence and structural similarities to CstII from Campylobacter jejuni Sujatha, MS Balaji, Petety V BMC Struct Biol Research Article BACKGROUND: The 3-D structure of none of the eukaryotic sialyltransferases (SiaTs) has been determined so far. Sequence alignment algorithms such as BLAST and PSI-BLAST could not detect a homolog of these enzymes from the protein databank. SiaTs, thus, belong to the hard/medium target category in the CASP experiments. The objective of the current work is to model the 3-D structures of human SiaTs which transfer the sialic acid in α2,3-linkage viz., ST3Gal I, II, III, IV, V, and VI, using fold-recognition and comparative modeling methods. The pair-wise sequence similarity among these six enzymes ranges from 41 to 63%. RESULTS: Unlike the sequence similarity servers, fold-recognition servers identified CstII, a α2,3/8 dual-activity SiaT from Campylobacter jejuni as the homolog of all the six ST3Gals; the level of sequence similarity between CstII and ST3Gals is only 15–20% and the similarity is restricted to well-characterized motif regions of ST3Gals. Deriving template-target sequence alignments for the entire ST3Gal sequence was not straightforward: the fold-recognition servers could not find a template for the region preceding the L-motif and that between the L- and S-motifs. Multiple structural templates were identified to model these regions and template identification-modeling-evaluation had to be performed iteratively to choose the most appropriate templates. The modeled structures have acceptable stereochemical properties and are also able to provide qualitative rationalizations for some of the site-directed mutagenesis results reported in literature. Apart from the predicted models, an unexpected but valuable finding from this study is the sequential and structural relatedness of family GT42 and family GT29 SiaTs. CONCLUSION: The modeled 3-D structures can be used for docking and other modeling studies and for the rational identification of residues to be mutated to impart desired properties such as altered stability, substrate specificity, etc. Several studies in literature have focused on the development of tools and/or servers for the large-scale/automated modeling of 3-D structures of proteins. In contrast, the present study focuses on modeling the 3-D structure of a specific protein of interest to a biochemist and illustrates the associated difficulties. It is also able to establish a sequence/structure relationship between sialyltransferases of two distinct families. BioMed Central 2006-04-19 /pmc/articles/PMC1508147/ /pubmed/16620397 http://dx.doi.org/10.1186/1472-6807-6-9 Text en Copyright © 2006 Sujatha and Balaji; licensee BioMed Central Ltd. http://creativecommons.org/licenses/by/2.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( (http://creativecommons.org/licenses/by/2.0) ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Research Article
Sujatha, MS
Balaji, Petety V
Fold-recognition and comparative modeling of human α2,3-sialyltransferases reveal their sequence and structural similarities to CstII from Campylobacter jejuni
title Fold-recognition and comparative modeling of human α2,3-sialyltransferases reveal their sequence and structural similarities to CstII from Campylobacter jejuni
title_full Fold-recognition and comparative modeling of human α2,3-sialyltransferases reveal their sequence and structural similarities to CstII from Campylobacter jejuni
title_fullStr Fold-recognition and comparative modeling of human α2,3-sialyltransferases reveal their sequence and structural similarities to CstII from Campylobacter jejuni
title_full_unstemmed Fold-recognition and comparative modeling of human α2,3-sialyltransferases reveal their sequence and structural similarities to CstII from Campylobacter jejuni
title_short Fold-recognition and comparative modeling of human α2,3-sialyltransferases reveal their sequence and structural similarities to CstII from Campylobacter jejuni
title_sort fold-recognition and comparative modeling of human α2,3-sialyltransferases reveal their sequence and structural similarities to cstii from campylobacter jejuni
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1508147/
https://www.ncbi.nlm.nih.gov/pubmed/16620397
http://dx.doi.org/10.1186/1472-6807-6-9
work_keys_str_mv AT sujathams foldrecognitionandcomparativemodelingofhumana23sialyltransferasesrevealtheirsequenceandstructuralsimilaritiestocstiifromcampylobacterjejuni
AT balajipetetyv foldrecognitionandcomparativemodelingofhumana23sialyltransferasesrevealtheirsequenceandstructuralsimilaritiestocstiifromcampylobacterjejuni