Cargando…
A strategy for oligonucleotide microarray probe reduction
BACKGROUND: One of the factors limiting the number of genes that can be analyzed on high-density oligonucleotide arrays is that each transcript is probed by multiple oligonucleotide probes. To reduce the number of probes required for each gene, a systematic approach to choosing the most representati...
Autores principales: | , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2002
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC151175/ https://www.ncbi.nlm.nih.gov/pubmed/12537562 |
Sumario: | BACKGROUND: One of the factors limiting the number of genes that can be analyzed on high-density oligonucleotide arrays is that each transcript is probed by multiple oligonucleotide probes. To reduce the number of probes required for each gene, a systematic approach to choosing the most representative probes is needed. A method is presented for reducing the number of probes per gene while maximizing the fidelity to the original array design. RESULTS: The methodology has been tested on a dataset comprising 317 Affymetrix HuGeneFL GeneChips. The performance of the original and reduced probe sets was compared in four cancer-classification problems. The results of these comparisons show that reduction of the probe set by 95% does not dramatically affect performance, and thus illustrate the feasibility of substantially reducing probe numbers without significantly compromising sensitivity and specificity of detection. CONCLUSIONS: The strategy described here is potentially useful for designing small, limited-probe genome-wide arrays for screening applications. |
---|