Cargando…
Transcriptome analysis of Sinorhizobium meliloti during symbiosis
BACKGROUND: Rhizobia induce the formation on specific legumes of new organs, the root nodules, as a result of an elaborated developmental program involving the two partners. In order to contribute to a more global view of the genetics underlying this plant-microbe symbiosis, we have mined the recent...
Autores principales: | , , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2003
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC151305/ https://www.ncbi.nlm.nih.gov/pubmed/12620125 http://dx.doi.org/10.1186/gb-2003-4-2-r15 |
_version_ | 1782120674216640512 |
---|---|
author | Ampe, Frederic Kiss, Ernö Sabourdy, Frédérique Batut, Jacques |
author_facet | Ampe, Frederic Kiss, Ernö Sabourdy, Frédérique Batut, Jacques |
author_sort | Ampe, Frederic |
collection | PubMed |
description | BACKGROUND: Rhizobia induce the formation on specific legumes of new organs, the root nodules, as a result of an elaborated developmental program involving the two partners. In order to contribute to a more global view of the genetics underlying this plant-microbe symbiosis, we have mined the recently determined Sinorhizobium meliloti genome sequence for genes potentially relevant to symbiosis. We describe here the construction and use of dedicated nylon macroarrays to study simultaneously the expression of 200 of these genes in a variety of environmental conditions, pertinent to symbiosis. RESULTS: The expression of 214 S. meliloti genes was monitored under ten environmental conditions, including free-living aerobic and microaerobic conditions, addition of the plant symbiotic elicitor luteolin, and a variety of symbiotic conditions. Five new genes induced by luteolin have been identified as well as nine new genes induced in mature nitrogen-fixing bacteroids. A bacterial and a plant symbiotic mutant affected in nodule development have been found of particular interest to decipher gene expression at the intermediate stage of the symbiotic interaction. S. meliloti gene expression in the cultivated legume Medicago sativa (alfalfa) and the model plant M. truncatula were compared and a small number of differences was found. CONCLUSIONS: In addition to exploring conditions for a genome-wide transcriptome analysis of the model rhizobium S. meliloti, the present work has highlighted the differential expression of several classes of genes during symbiosis. These genes are related to invasion, oxidative stress protection, iron mobilization, and signaling, thus emphasizing possible common mechanisms between symbiosis and pathogenesis. |
format | Text |
id | pubmed-151305 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2003 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-1513052003-03-13 Transcriptome analysis of Sinorhizobium meliloti during symbiosis Ampe, Frederic Kiss, Ernö Sabourdy, Frédérique Batut, Jacques Genome Biol Research BACKGROUND: Rhizobia induce the formation on specific legumes of new organs, the root nodules, as a result of an elaborated developmental program involving the two partners. In order to contribute to a more global view of the genetics underlying this plant-microbe symbiosis, we have mined the recently determined Sinorhizobium meliloti genome sequence for genes potentially relevant to symbiosis. We describe here the construction and use of dedicated nylon macroarrays to study simultaneously the expression of 200 of these genes in a variety of environmental conditions, pertinent to symbiosis. RESULTS: The expression of 214 S. meliloti genes was monitored under ten environmental conditions, including free-living aerobic and microaerobic conditions, addition of the plant symbiotic elicitor luteolin, and a variety of symbiotic conditions. Five new genes induced by luteolin have been identified as well as nine new genes induced in mature nitrogen-fixing bacteroids. A bacterial and a plant symbiotic mutant affected in nodule development have been found of particular interest to decipher gene expression at the intermediate stage of the symbiotic interaction. S. meliloti gene expression in the cultivated legume Medicago sativa (alfalfa) and the model plant M. truncatula were compared and a small number of differences was found. CONCLUSIONS: In addition to exploring conditions for a genome-wide transcriptome analysis of the model rhizobium S. meliloti, the present work has highlighted the differential expression of several classes of genes during symbiosis. These genes are related to invasion, oxidative stress protection, iron mobilization, and signaling, thus emphasizing possible common mechanisms between symbiosis and pathogenesis. BioMed Central 2003 2003-01-31 /pmc/articles/PMC151305/ /pubmed/12620125 http://dx.doi.org/10.1186/gb-2003-4-2-r15 Text en Copyright © 2003 Ampe et al.; licensee BioMed Central Ltd. This is an Open Access article: verbatim copying and redistribution of this article are permitted in all media for any purpose, provided this notice is preserved along with the article's original URL. |
spellingShingle | Research Ampe, Frederic Kiss, Ernö Sabourdy, Frédérique Batut, Jacques Transcriptome analysis of Sinorhizobium meliloti during symbiosis |
title | Transcriptome analysis of Sinorhizobium meliloti during symbiosis |
title_full | Transcriptome analysis of Sinorhizobium meliloti during symbiosis |
title_fullStr | Transcriptome analysis of Sinorhizobium meliloti during symbiosis |
title_full_unstemmed | Transcriptome analysis of Sinorhizobium meliloti during symbiosis |
title_short | Transcriptome analysis of Sinorhizobium meliloti during symbiosis |
title_sort | transcriptome analysis of sinorhizobium meliloti during symbiosis |
topic | Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC151305/ https://www.ncbi.nlm.nih.gov/pubmed/12620125 http://dx.doi.org/10.1186/gb-2003-4-2-r15 |
work_keys_str_mv | AT ampefrederic transcriptomeanalysisofsinorhizobiummelilotiduringsymbiosis AT kisserno transcriptomeanalysisofsinorhizobiummelilotiduringsymbiosis AT sabourdyfrederique transcriptomeanalysisofsinorhizobiummelilotiduringsymbiosis AT batutjacques transcriptomeanalysisofsinorhizobiummelilotiduringsymbiosis |