Cargando…
Kernel-based distance metric learning for microarray data classification
BACKGROUND: The most fundamental task using gene expression data in clinical oncology is to classify tissue samples according to their gene expression levels. Compared with traditional pattern classifications, gene expression-based data classification is typically characterized by high dimensionalit...
Autores principales: | Xiong, Huilin, Chen, Xue-wen |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2006
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1513256/ https://www.ncbi.nlm.nih.gov/pubmed/16774678 http://dx.doi.org/10.1186/1471-2105-7-299 |
Ejemplares similares
-
An Improved Kernel Credal Classification Algorithm Based on Regularized Mahalanobis Distance: Application to Microarray Data Analysis
por: EL bendadi, Khawla, et al.
Publicado: (2018) -
Classification of heterogeneous microarray data by maximum entropy kernel
por: Fujibuchi, Wataru, et al.
Publicado: (2007) -
Classification of Microarray Data Using Kernel Fuzzy Inference System
por: Kumar, Mukesh, et al.
Publicado: (2014) -
A Kernel-Based Multivariate Feature Selection Method for Microarray Data Classification
por: Sun, Shiquan, et al.
Publicado: (2014) -
Kernel Based Nonlinear Dimensionality Reduction and Classification for Genomic Microarray
por: Li, Xuehua, et al.
Publicado: (2008)