Cargando…
Extracting Gene Networks for Low-Dose Radiation Using Graph Theoretical Algorithms
Genes with common functions often exhibit correlated expression levels, which can be used to identify sets of interacting genes from microarray data. Microarrays typically measure expression across genomic space, creating a massive matrix of co-expression that must be mined to extract only the most...
Autores principales: | Voy, Brynn H, Scharff, Jon A, Perkins, Andy D, Saxton, Arnold M, Borate, Bhavesh, Chesler, Elissa J, Branstetter, Lisa K, Langston, Michael A |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2006
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1513268/ https://www.ncbi.nlm.nih.gov/pubmed/16854212 http://dx.doi.org/10.1371/journal.pcbi.0020089 |
Ejemplares similares
-
Inferring gene coexpression networks for low dose ionizing radiation using graph theoretical algorithms and systems genetics
por: Naswa, Sudhir, et al.
Publicado: (2010) -
Comparison of threshold selection methods for microarray gene co-expression matrices
por: Borate, Bhavesh R, et al.
Publicado: (2009) -
A systematic comparison of genome-scale clustering algorithms
por: Jay, Jeremy J, et al.
Publicado: (2012) -
On finding bicliques in bipartite graphs: a novel algorithm and its application to the integration of diverse biological data types
por: Zhang, Yun, et al.
Publicado: (2014) -
Algorithmic tools for tripartite data analysis
por: Phillips, Charles A, et al.
Publicado: (2014)