Cargando…

Checkpoint control of mitotic exit—do budding yeast mind the GAP?

Cell cycle checkpoints can delay mitotic exit in budding yeast. The master controller is the small GTPase Tem1, with inputs from a proposed guanine nucleotide exchange factor (GEF), Lte1, and a GTPase-activating protein (GAP), Bub2/Bfa1. In this issue, Fraschini et al. (p. 335) show that GAP activit...

Descripción completa

Detalles Bibliográficos
Autores principales: Cooper, John A., Nelson, Scott A.
Formato: Texto
Lenguaje:English
Publicado: The Rockefeller University Press 2006
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1513541/
https://www.ncbi.nlm.nih.gov/pubmed/16431930
http://dx.doi.org/10.1083/jcb.200512153
Descripción
Sumario:Cell cycle checkpoints can delay mitotic exit in budding yeast. The master controller is the small GTPase Tem1, with inputs from a proposed guanine nucleotide exchange factor (GEF), Lte1, and a GTPase-activating protein (GAP), Bub2/Bfa1. In this issue, Fraschini et al. (p. 335) show that GAP activity of Bub2/Bfa1 appears to be dispensable for inactivation of Tem1 in cells. Their results call into question the GTP/GDP switch model for Tem1 activity, as have other results in the past. The paper also focuses attention on the two spindle pole bodies as potential sites for regulation of Tem1.