Cargando…
Quantitative prediction of mouse class I MHC peptide binding affinity using support vector machine regression (SVR) models
BACKGROUND: The binding between peptide epitopes and major histocompatibility complex proteins (MHCs) is an important event in the cellular immune response. Accurate prediction of the binding between short peptides and the MHC molecules has long been a principal challenge for immunoinformatics. Rece...
Autores principales: | Liu, Wen, Meng, Xiangshan, Xu, Qiqi, Flower, Darren R, Li, Tongbin |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2006
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1513606/ https://www.ncbi.nlm.nih.gov/pubmed/16579851 http://dx.doi.org/10.1186/1471-2105-7-182 |
Ejemplares similares
-
SVRMHC prediction server for MHC-binding peptides
por: Wan, Ji, et al.
Publicado: (2006) -
Peptide length significantly influences in vitro affinity for MHC class II molecules
por: O'Brien, Cathal, et al.
Publicado: (2008) -
Statistical deconvolution of enthalpic energetic contributions to MHC-peptide binding affinity
por: Davies, Matthew N, et al.
Publicado: (2006) -
Predicting Class II MHC-Peptide binding: a kernel based approach using similarity scores
por: Salomon, Jesper, et al.
Publicado: (2006) -
Peptide binding prediction for the human class II MHC allele HLA-DP2: a molecular docking approach
por: Patronov, Atanas, et al.
Publicado: (2011)