Cargando…
Regularized binormal ROC method in disease classification using microarray data
BACKGROUND: An important application of microarrays is to discover genomic biomarkers, among tens of thousands of genes assayed, for disease diagnosis and prognosis. Thus it is of interest to develop efficient statistical methods that can simultaneously identify important biomarkers from such high-t...
Autores principales: | Ma, Shuangge, Song, Xiao, Huang, Jian |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2006
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1513612/ https://www.ncbi.nlm.nih.gov/pubmed/16684357 http://dx.doi.org/10.1186/1471-2105-7-253 |
Ejemplares similares
-
Regularized gene selection in cancer microarray meta-analysis
por: Ma, Shuangge, et al.
Publicado: (2009) -
Supervised group Lasso with applications to microarray data analysis
por: Ma, Shuangge, et al.
Publicado: (2007) -
Additive risk survival model with microarray data
por: Ma, Shuangge, et al.
Publicado: (2007) -
On the analysis of glycomics mass spectrometry data via the regularized area under the ROC curve
por: Ye, Jingjing, et al.
Publicado: (2007) -
Not proper ROC curves as new tool for the analysis of differentially expressed genes in microarray experiments
por: Parodi, Stefano, et al.
Publicado: (2008)