Cargando…

Interaction of metals during their uptake and accumulation in rabbit renal cortical slices.

The uptake and accumulation of metals occurs in the kidney, which is a key site for interaction between metal nephrotoxicants. The uptake/accumulation and interaction of CdCl2, HgCl2, K2Cr2O7, and NaAsO2 was examined in precision-cut rabbit renal cortical slices. Slices were incubated with 10(-6) to...

Descripción completa

Detalles Bibliográficos
Autores principales: Keith, R L, McGuinness, S J, Gandolfi, A J, Lowe, T P, Chen, Q, Fernando, Q
Formato: Texto
Lenguaje:English
Publicado: 1995
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1519335/
https://www.ncbi.nlm.nih.gov/pubmed/7621806
_version_ 1782128631461445632
author Keith, R L
McGuinness, S J
Gandolfi, A J
Lowe, T P
Chen, Q
Fernando, Q
author_facet Keith, R L
McGuinness, S J
Gandolfi, A J
Lowe, T P
Chen, Q
Fernando, Q
author_sort Keith, R L
collection PubMed
description The uptake and accumulation of metals occurs in the kidney, which is a key site for interaction between metal nephrotoxicants. The uptake/accumulation and interaction of CdCl2, HgCl2, K2Cr2O7, and NaAsO2 was examined in precision-cut rabbit renal cortical slices. Slices were incubated with 10(-6) to 10(-3) M of a single metal toxicant or combinations of metal toxicants for 12 hr in DME-F12 media. Slices were blotted and sandwiched between two mylar films stretched across XRF sample cups. Quantitation of the metal in the slices was performed by proton-induced X-ray emission analysis (PIXE). The uptake of the metals was rapid, often reaching a maximum between 3 to 6 hr; the accumulation of Hg was highest, followed in order by Cd, Cr, and As. When two metals were present together, substantial alterations were observed in the uptake of the metals in the slices. HgCl2 hindered the uptake of K2Cr2O7, NaAsO2, CdCl2 (in this order), whereas these metals facilitated the uptake of HgCl2. However, a decreased uptake of both metals was often noted after exposure to other combinations of metals. PIXE analysis of metal content in slices is attractive since all elements (atomic number > 20) can be determined simultaneously. This information will be particularly useful in studying potential toxic interactions.
format Text
id pubmed-1519335
institution National Center for Biotechnology Information
language English
publishDate 1995
record_format MEDLINE/PubMed
spelling pubmed-15193352006-07-28 Interaction of metals during their uptake and accumulation in rabbit renal cortical slices. Keith, R L McGuinness, S J Gandolfi, A J Lowe, T P Chen, Q Fernando, Q Environ Health Perspect Research Article The uptake and accumulation of metals occurs in the kidney, which is a key site for interaction between metal nephrotoxicants. The uptake/accumulation and interaction of CdCl2, HgCl2, K2Cr2O7, and NaAsO2 was examined in precision-cut rabbit renal cortical slices. Slices were incubated with 10(-6) to 10(-3) M of a single metal toxicant or combinations of metal toxicants for 12 hr in DME-F12 media. Slices were blotted and sandwiched between two mylar films stretched across XRF sample cups. Quantitation of the metal in the slices was performed by proton-induced X-ray emission analysis (PIXE). The uptake of the metals was rapid, often reaching a maximum between 3 to 6 hr; the accumulation of Hg was highest, followed in order by Cd, Cr, and As. When two metals were present together, substantial alterations were observed in the uptake of the metals in the slices. HgCl2 hindered the uptake of K2Cr2O7, NaAsO2, CdCl2 (in this order), whereas these metals facilitated the uptake of HgCl2. However, a decreased uptake of both metals was often noted after exposure to other combinations of metals. PIXE analysis of metal content in slices is attractive since all elements (atomic number > 20) can be determined simultaneously. This information will be particularly useful in studying potential toxic interactions. 1995-02 /pmc/articles/PMC1519335/ /pubmed/7621806 Text en
spellingShingle Research Article
Keith, R L
McGuinness, S J
Gandolfi, A J
Lowe, T P
Chen, Q
Fernando, Q
Interaction of metals during their uptake and accumulation in rabbit renal cortical slices.
title Interaction of metals during their uptake and accumulation in rabbit renal cortical slices.
title_full Interaction of metals during their uptake and accumulation in rabbit renal cortical slices.
title_fullStr Interaction of metals during their uptake and accumulation in rabbit renal cortical slices.
title_full_unstemmed Interaction of metals during their uptake and accumulation in rabbit renal cortical slices.
title_short Interaction of metals during their uptake and accumulation in rabbit renal cortical slices.
title_sort interaction of metals during their uptake and accumulation in rabbit renal cortical slices.
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1519335/
https://www.ncbi.nlm.nih.gov/pubmed/7621806
work_keys_str_mv AT keithrl interactionofmetalsduringtheiruptakeandaccumulationinrabbitrenalcorticalslices
AT mcguinnesssj interactionofmetalsduringtheiruptakeandaccumulationinrabbitrenalcorticalslices
AT gandolfiaj interactionofmetalsduringtheiruptakeandaccumulationinrabbitrenalcorticalslices
AT lowetp interactionofmetalsduringtheiruptakeandaccumulationinrabbitrenalcorticalslices
AT chenq interactionofmetalsduringtheiruptakeandaccumulationinrabbitrenalcorticalslices
AT fernandoq interactionofmetalsduringtheiruptakeandaccumulationinrabbitrenalcorticalslices