Cargando…
Physiology of bone: mineral compartment proteins as candidates for environmental perturbation by lead.
Termine et al. first demonstrated that sequential dissociative extraction and fractionation procedures with protease inhibitors could provide a convenient approach for the study of mineral compartment constituents. The primary extraction regimen used 4 M guanidine HCl to remove most of the protein f...
Autores principales: | , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
1991
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1519352/ https://www.ncbi.nlm.nih.gov/pubmed/2040255 |
Sumario: | Termine et al. first demonstrated that sequential dissociative extraction and fractionation procedures with protease inhibitors could provide a convenient approach for the study of mineral compartment constituents. The primary extraction regimen used 4 M guanidine HCl to remove most of the protein from the nonmineralized phase of bone. Subsequently, EDTA-guanidine was used to remove the mineral-phase components. These methods discriminate on the basis of physical-chemical association with a mineral phase rather than on the specific gene products of a particular cell. In the present discussion emphasis is directed at a group of divalent cation binding proteins isolated from the mineral compartment of bone. The localization, synthesis, and chemical characteristics of osteonectin, bone sialoproteins I and II, and bone acidic glycoprotein-75 are discussed and offered as possible sites for perturbation by the environment with lead exposure. |
---|