Cargando…
The chemistry of chromium and some resulting analytical problems.
Chromium, named for its many-colored compounds, exists in the oxidation states of -2 to +6 inclusively. The compounds exhibit a wide range of geometries including square planar, tetrahedral, octahedral, and various distorted geometries. Chromium is found in nature principally as the chromite ore FeC...
Autor principal: | |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
1991
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1519378/ https://www.ncbi.nlm.nih.gov/pubmed/1935853 |
_version_ | 1782128640748683264 |
---|---|
author | Shupack, S I |
author_facet | Shupack, S I |
author_sort | Shupack, S I |
collection | PubMed |
description | Chromium, named for its many-colored compounds, exists in the oxidation states of -2 to +6 inclusively. The compounds exhibit a wide range of geometries including square planar, tetrahedral, octahedral, and various distorted geometries. Chromium is found in nature principally as the chromite ore FeCr2O4 in which chromium is in the +3 state. The existence of a particular oxidation state is dependent on many factors including pH, redox potentials, and kinetics. Thermodynamically, +3 and +2 are the most stable states, while the +3 and +6 oxidation states are the most common ones found in aqueous solution. Kinetically, chromium +3 is substitutionally inert: for water exchange k(sec-1) = 2.5 x 10(-6), due to the presence of the half-filled d(t2g)3.4A2g state. On the other hand, protonation/deprotonation is quite rapid. Polymerization is very slow but is promoted at higher pHs; acid cleavage of the protonated oligomers is also quite slow. Chromium +6 as the chromate ion is strongly oxidizing at low pHs and less so in basic solution. The chromate ion does form some polyacids and polyanions. These factors must be considered in analyzing samples for total chromium and for the amounts of each oxidation state. |
format | Text |
id | pubmed-1519378 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 1991 |
record_format | MEDLINE/PubMed |
spelling | pubmed-15193782006-07-26 The chemistry of chromium and some resulting analytical problems. Shupack, S I Environ Health Perspect Research Article Chromium, named for its many-colored compounds, exists in the oxidation states of -2 to +6 inclusively. The compounds exhibit a wide range of geometries including square planar, tetrahedral, octahedral, and various distorted geometries. Chromium is found in nature principally as the chromite ore FeCr2O4 in which chromium is in the +3 state. The existence of a particular oxidation state is dependent on many factors including pH, redox potentials, and kinetics. Thermodynamically, +3 and +2 are the most stable states, while the +3 and +6 oxidation states are the most common ones found in aqueous solution. Kinetically, chromium +3 is substitutionally inert: for water exchange k(sec-1) = 2.5 x 10(-6), due to the presence of the half-filled d(t2g)3.4A2g state. On the other hand, protonation/deprotonation is quite rapid. Polymerization is very slow but is promoted at higher pHs; acid cleavage of the protonated oligomers is also quite slow. Chromium +6 as the chromate ion is strongly oxidizing at low pHs and less so in basic solution. The chromate ion does form some polyacids and polyanions. These factors must be considered in analyzing samples for total chromium and for the amounts of each oxidation state. 1991-05 /pmc/articles/PMC1519378/ /pubmed/1935853 Text en |
spellingShingle | Research Article Shupack, S I The chemistry of chromium and some resulting analytical problems. |
title | The chemistry of chromium and some resulting analytical problems. |
title_full | The chemistry of chromium and some resulting analytical problems. |
title_fullStr | The chemistry of chromium and some resulting analytical problems. |
title_full_unstemmed | The chemistry of chromium and some resulting analytical problems. |
title_short | The chemistry of chromium and some resulting analytical problems. |
title_sort | chemistry of chromium and some resulting analytical problems. |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1519378/ https://www.ncbi.nlm.nih.gov/pubmed/1935853 |
work_keys_str_mv | AT shupacksi thechemistryofchromiumandsomeresultinganalyticalproblems AT shupacksi chemistryofchromiumandsomeresultinganalyticalproblems |