Cargando…

Nonmutagenic carcinogens induce intrachromosomal recombination in dividing yeast cells.

A large number of animal and human carcinogens without apparent genotoxic activity exist (nonmutagenic carcinogens) that are difficult or impossible to detect with the currently used short-term tests. Because of the association of carcinogenesis with genome rearrangement, a system selecting for intr...

Descripción completa

Detalles Bibliográficos
Autor principal: Schiestl, R H
Formato: Texto
Lenguaje:English
Publicado: 1993
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1519453/
https://www.ncbi.nlm.nih.gov/pubmed/8013407
Descripción
Sumario:A large number of animal and human carcinogens without apparent genotoxic activity exist (nonmutagenic carcinogens) that are difficult or impossible to detect with the currently used short-term tests. Because of the association of carcinogenesis with genome rearrangement, a system selecting for intrachromosomal recombination (DEL recombination) that results in genome rearrangement has been constructed in the yeast Saccharomyces cerevisiae. Because DEL recombination is under different genetic control than interchromosomal recombination and meiotic recombination, it is probably due to a different mechanism. It has been found that DEL recombination is readily inducible by 10 mutagenic carcinogens and 17 nonmutagenic carcinogens that are not detectable (false negatives) with the Ames assay. In addition, three out of four mutagens that do not cause cancer (false positives in the Ames assay) do not induce DEL recombination. DEL recombination is inducible by UV only in dividing cells but not in cells synchronized in the G1 or G2 phase of the cell cycle. Interchromosomal recombination, on the other hand, is inducible in G1 but not in G2. The nonmutagenic carcinogens induce DEL recombination only in actively growing cells, which may give some indication as to their mechanism. Further characterization of the mechanism involved in induction of DEL recombination may contribute to the understanding of the biological activity of nonmutagenic carcinogens.