Cargando…
Neurobehavioral effects of power-frequency electromagnetic fields.
Some laboratory experiments have suggested that power-frequency electric and magnetic fields (EMF) may be capable of influencing calcium efflux from cell membranes, pineal function, and circadian rhythms. As yet, however, no consistent, replicable laboratory model has been developed for any of these...
Autor principal: | |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
1993
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1519707/ https://www.ncbi.nlm.nih.gov/pubmed/8206018 |
Sumario: | Some laboratory experiments have suggested that power-frequency electric and magnetic fields (EMF) may be capable of influencing calcium efflux from cell membranes, pineal function, and circadian rhythms. As yet, however, no consistent, replicable laboratory model has been developed for any of these effects. Most assessments of human volunteers exposed to EMF have been negative, but occasional effects on vigilance or alertness and some modest effects on circadian rhythmicity have been reported. Several carefully performed studies of workers occupationally exposed to high electric-field strengths have failed to find effects on behavior or cognitive functioning. Although the bulk of human research on the effects of EMF on cognitive performance is negative, there has been less assessment of behavior and psychiatric symptomatology. Because some studies, in both humans and animals, have described effects of EMF on circadian rhythms, future research might concentrate profitably on the assessment of EMF in relation to depression and other cyclically mediated psychiatric disorders. |
---|