Cargando…
SNP-SNP interactions in breast cancer susceptibility
BACKGROUND: Breast cancer predisposition genes identified to date (e.g., BRCA1 and BRCA2) are responsible for less than 5% of all breast cancer cases. Many studies have shown that the cancer risks associated with individual commonly occurring single nucleotide polymorphisms (SNPs) are incremental. H...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2006
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1522021/ https://www.ncbi.nlm.nih.gov/pubmed/16672066 http://dx.doi.org/10.1186/1471-2407-6-114 |
_version_ | 1782128786686345216 |
---|---|
author | Onay, Venüs Ümmiye Briollais, Laurent Knight, Julia A Shi, Ellen Wang, Yuanyuan Wells, Sean Li, Hong Rajendram, Isaac Andrulis, Irene L Ozcelik, Hilmi |
author_facet | Onay, Venüs Ümmiye Briollais, Laurent Knight, Julia A Shi, Ellen Wang, Yuanyuan Wells, Sean Li, Hong Rajendram, Isaac Andrulis, Irene L Ozcelik, Hilmi |
author_sort | Onay, Venüs Ümmiye |
collection | PubMed |
description | BACKGROUND: Breast cancer predisposition genes identified to date (e.g., BRCA1 and BRCA2) are responsible for less than 5% of all breast cancer cases. Many studies have shown that the cancer risks associated with individual commonly occurring single nucleotide polymorphisms (SNPs) are incremental. However, polygenic models suggest that multiple commonly occurring low to modestly penetrant SNPs of cancer related genes might have a greater effect on a disease when considered in combination. METHODS: In an attempt to identify the breast cancer risk conferred by SNP interactions, we have studied 19 SNPs from genes involved in major cancer related pathways. All SNPs were genotyped by TaqMan 5'nuclease assay. The association between the case-control status and each individual SNP, measured by the odds ratio and its corresponding 95% confidence interval, was estimated using unconditional logistic regression models. At the second stage, two-way interactions were investigated using multivariate logistic models. The robustness of the interactions, which were observed among SNPs with stronger functional evidence, was assessed using a bootstrap approach, and correction for multiple testing based on the false discovery rate (FDR) principle. RESULTS: None of these SNPs contributed to breast cancer risk individually. However, we have demonstrated evidence for gene-gene (SNP-SNP) interaction among these SNPs, which were associated with increased breast cancer risk. Our study suggests cross talk between the SNPs of the DNA repair and immune system (XPD-[Lys751Gln] and IL10-[G(-1082)A]), cell cycle and estrogen metabolism (CCND1-[Pro241Pro] and COMT-[Met108/158Val]), cell cycle and DNA repair (BARD1-[Pro24Ser] and XPD-[Lys751Gln]), and within carcinogen metabolism (GSTP1-[Ile105Val] and COMT-[Met108/158Val]) pathways. CONCLUSION: The importance of these pathways and their communication in breast cancer predisposition has been emphasized previously, but their biological interactions through SNPs have not been described. The strategy used here has the potential to identify complex biological links among breast cancer genes and processes. This will provide novel biological information, which will ultimately improve breast cancer risk management. |
format | Text |
id | pubmed-1522021 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2006 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-15220212006-07-26 SNP-SNP interactions in breast cancer susceptibility Onay, Venüs Ümmiye Briollais, Laurent Knight, Julia A Shi, Ellen Wang, Yuanyuan Wells, Sean Li, Hong Rajendram, Isaac Andrulis, Irene L Ozcelik, Hilmi BMC Cancer Research Article BACKGROUND: Breast cancer predisposition genes identified to date (e.g., BRCA1 and BRCA2) are responsible for less than 5% of all breast cancer cases. Many studies have shown that the cancer risks associated with individual commonly occurring single nucleotide polymorphisms (SNPs) are incremental. However, polygenic models suggest that multiple commonly occurring low to modestly penetrant SNPs of cancer related genes might have a greater effect on a disease when considered in combination. METHODS: In an attempt to identify the breast cancer risk conferred by SNP interactions, we have studied 19 SNPs from genes involved in major cancer related pathways. All SNPs were genotyped by TaqMan 5'nuclease assay. The association between the case-control status and each individual SNP, measured by the odds ratio and its corresponding 95% confidence interval, was estimated using unconditional logistic regression models. At the second stage, two-way interactions were investigated using multivariate logistic models. The robustness of the interactions, which were observed among SNPs with stronger functional evidence, was assessed using a bootstrap approach, and correction for multiple testing based on the false discovery rate (FDR) principle. RESULTS: None of these SNPs contributed to breast cancer risk individually. However, we have demonstrated evidence for gene-gene (SNP-SNP) interaction among these SNPs, which were associated with increased breast cancer risk. Our study suggests cross talk between the SNPs of the DNA repair and immune system (XPD-[Lys751Gln] and IL10-[G(-1082)A]), cell cycle and estrogen metabolism (CCND1-[Pro241Pro] and COMT-[Met108/158Val]), cell cycle and DNA repair (BARD1-[Pro24Ser] and XPD-[Lys751Gln]), and within carcinogen metabolism (GSTP1-[Ile105Val] and COMT-[Met108/158Val]) pathways. CONCLUSION: The importance of these pathways and their communication in breast cancer predisposition has been emphasized previously, but their biological interactions through SNPs have not been described. The strategy used here has the potential to identify complex biological links among breast cancer genes and processes. This will provide novel biological information, which will ultimately improve breast cancer risk management. BioMed Central 2006-05-03 /pmc/articles/PMC1522021/ /pubmed/16672066 http://dx.doi.org/10.1186/1471-2407-6-114 Text en Copyright © 2006 Onay et al; licensee BioMed Central Ltd. http://creativecommons.org/licenses/by/2.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( (http://creativecommons.org/licenses/by/2.0) ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Article Onay, Venüs Ümmiye Briollais, Laurent Knight, Julia A Shi, Ellen Wang, Yuanyuan Wells, Sean Li, Hong Rajendram, Isaac Andrulis, Irene L Ozcelik, Hilmi SNP-SNP interactions in breast cancer susceptibility |
title | SNP-SNP interactions in breast cancer susceptibility |
title_full | SNP-SNP interactions in breast cancer susceptibility |
title_fullStr | SNP-SNP interactions in breast cancer susceptibility |
title_full_unstemmed | SNP-SNP interactions in breast cancer susceptibility |
title_short | SNP-SNP interactions in breast cancer susceptibility |
title_sort | snp-snp interactions in breast cancer susceptibility |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1522021/ https://www.ncbi.nlm.nih.gov/pubmed/16672066 http://dx.doi.org/10.1186/1471-2407-6-114 |
work_keys_str_mv | AT onayvenusummiye snpsnpinteractionsinbreastcancersusceptibility AT briollaislaurent snpsnpinteractionsinbreastcancersusceptibility AT knightjuliaa snpsnpinteractionsinbreastcancersusceptibility AT shiellen snpsnpinteractionsinbreastcancersusceptibility AT wangyuanyuan snpsnpinteractionsinbreastcancersusceptibility AT wellssean snpsnpinteractionsinbreastcancersusceptibility AT lihong snpsnpinteractionsinbreastcancersusceptibility AT rajendramisaac snpsnpinteractionsinbreastcancersusceptibility AT andrulisirenel snpsnpinteractionsinbreastcancersusceptibility AT ozcelikhilmi snpsnpinteractionsinbreastcancersusceptibility |