Cargando…
AUG sequences are required to sustain nonsense-codon-mediated suppression of splicing
More than 90% of human genes are rich in intronic latent 5′ splice sites whose utilization in pre-mRNA splicing would introduce in-frame stop codons into the resultant mRNAs. We have therefore hypothesized that suppression of splicing (SOS) at latent 5′ splice sites regulates alternative 5′ splice s...
Autores principales: | , , , , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2006
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1524910/ https://www.ncbi.nlm.nih.gov/pubmed/16855285 http://dx.doi.org/10.1093/nar/gkl390 |
_version_ | 1782128856145068032 |
---|---|
author | Kamhi, Eyal Yahalom, Galit Kass, Gideon Hacham, Yael Sperling, Ruth Sperling, Joseph |
author_facet | Kamhi, Eyal Yahalom, Galit Kass, Gideon Hacham, Yael Sperling, Ruth Sperling, Joseph |
author_sort | Kamhi, Eyal |
collection | PubMed |
description | More than 90% of human genes are rich in intronic latent 5′ splice sites whose utilization in pre-mRNA splicing would introduce in-frame stop codons into the resultant mRNAs. We have therefore hypothesized that suppression of splicing (SOS) at latent 5′ splice sites regulates alternative 5′ splice site selection in a way that prevents the production of toxic nonsense mRNAs and verified this idea by showing that the removal of such in-frame stop codons is sufficient to activate latent splicing. Splicing control by SOS requires recognition of the mRNA reading frame, presumably recognizing the start codon sequence. Here we show that AUG sequences are indeed essential for SOS. Although protein translation does not seem to be required for SOS, the first AUG is shown here to be necessary but not sufficient. We further show that latent splicing can be elicited upon treatment with pactamycin—a drug known to block translation by its ability to recognize an RNA fold—but not by treatment with other drugs that inhibit translation through other mechanisms. The effect of pactamycin on SOS is dependent neither on steady-state translation nor on the pioneer round of translation. This effect is found for both transfected and endogenous genes, indicating that SOS is a natural mechanism. |
format | Text |
id | pubmed-1524910 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2006 |
publisher | Oxford University Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-15249102006-08-09 AUG sequences are required to sustain nonsense-codon-mediated suppression of splicing Kamhi, Eyal Yahalom, Galit Kass, Gideon Hacham, Yael Sperling, Ruth Sperling, Joseph Nucleic Acids Res Article More than 90% of human genes are rich in intronic latent 5′ splice sites whose utilization in pre-mRNA splicing would introduce in-frame stop codons into the resultant mRNAs. We have therefore hypothesized that suppression of splicing (SOS) at latent 5′ splice sites regulates alternative 5′ splice site selection in a way that prevents the production of toxic nonsense mRNAs and verified this idea by showing that the removal of such in-frame stop codons is sufficient to activate latent splicing. Splicing control by SOS requires recognition of the mRNA reading frame, presumably recognizing the start codon sequence. Here we show that AUG sequences are indeed essential for SOS. Although protein translation does not seem to be required for SOS, the first AUG is shown here to be necessary but not sufficient. We further show that latent splicing can be elicited upon treatment with pactamycin—a drug known to block translation by its ability to recognize an RNA fold—but not by treatment with other drugs that inhibit translation through other mechanisms. The effect of pactamycin on SOS is dependent neither on steady-state translation nor on the pioneer round of translation. This effect is found for both transfected and endogenous genes, indicating that SOS is a natural mechanism. Oxford University Press 2006 2006-07-19 /pmc/articles/PMC1524910/ /pubmed/16855285 http://dx.doi.org/10.1093/nar/gkl390 Text en © 2006 The Author(s) |
spellingShingle | Article Kamhi, Eyal Yahalom, Galit Kass, Gideon Hacham, Yael Sperling, Ruth Sperling, Joseph AUG sequences are required to sustain nonsense-codon-mediated suppression of splicing |
title | AUG sequences are required to sustain nonsense-codon-mediated suppression of splicing |
title_full | AUG sequences are required to sustain nonsense-codon-mediated suppression of splicing |
title_fullStr | AUG sequences are required to sustain nonsense-codon-mediated suppression of splicing |
title_full_unstemmed | AUG sequences are required to sustain nonsense-codon-mediated suppression of splicing |
title_short | AUG sequences are required to sustain nonsense-codon-mediated suppression of splicing |
title_sort | aug sequences are required to sustain nonsense-codon-mediated suppression of splicing |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1524910/ https://www.ncbi.nlm.nih.gov/pubmed/16855285 http://dx.doi.org/10.1093/nar/gkl390 |
work_keys_str_mv | AT kamhieyal augsequencesarerequiredtosustainnonsensecodonmediatedsuppressionofsplicing AT yahalomgalit augsequencesarerequiredtosustainnonsensecodonmediatedsuppressionofsplicing AT kassgideon augsequencesarerequiredtosustainnonsensecodonmediatedsuppressionofsplicing AT hachamyael augsequencesarerequiredtosustainnonsensecodonmediatedsuppressionofsplicing AT sperlingruth augsequencesarerequiredtosustainnonsensecodonmediatedsuppressionofsplicing AT sperlingjoseph augsequencesarerequiredtosustainnonsensecodonmediatedsuppressionofsplicing |