Cargando…
Sequence biases in large scale gene expression profiling data
We present the results of a simple, statistical assay that measures the G+C content sensitivity bias of gene expression experiments without the requirement of a duplicate experiment. We analyse five gene expression profiling methods: Affymetrix GeneChip, Long Serial Analysis of Gene Expression (Long...
Autores principales: | , , , , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2006
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1524917/ https://www.ncbi.nlm.nih.gov/pubmed/16840527 http://dx.doi.org/10.1093/nar/gkl404 |
_version_ | 1782128857755680768 |
---|---|
author | Siddiqui, Asim S. Delaney, Allen D. Schnerch, Angelique Griffith, Obi L. Jones, Steven J. M. Marra, Marco A. |
author_facet | Siddiqui, Asim S. Delaney, Allen D. Schnerch, Angelique Griffith, Obi L. Jones, Steven J. M. Marra, Marco A. |
author_sort | Siddiqui, Asim S. |
collection | PubMed |
description | We present the results of a simple, statistical assay that measures the G+C content sensitivity bias of gene expression experiments without the requirement of a duplicate experiment. We analyse five gene expression profiling methods: Affymetrix GeneChip, Long Serial Analysis of Gene Expression (LongSAGE), LongSAGELite, ‘Classic’ Massively Parallel Signature Sequencing (MPSS) and ‘Signature’ MPSS. We demonstrate the methods have systematic and random errors leading to a different G+C content sensitivity. The relationship between this experimental error and the G+C content of the probe set or tag that identifies each gene influences whether the gene is detected and, if detected, the level of gene expression measured. LongSAGE has the least bias, while Signature MPSS shows a strong bias to G+C rich tags and Affymetrix data show different bias depending on the data processing method (MAS 5.0, RMA or GC-RMA). The bias in the Affymetrix data primarily impacts genes expressed at lower levels. Despite the larger sampling of the MPSS library, SAGE identifies significantly more genes (60% more RefSeq genes in a single comparison). |
format | Text |
id | pubmed-1524917 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2006 |
publisher | Oxford University Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-15249172006-08-09 Sequence biases in large scale gene expression profiling data Siddiqui, Asim S. Delaney, Allen D. Schnerch, Angelique Griffith, Obi L. Jones, Steven J. M. Marra, Marco A. Nucleic Acids Res Methods Online We present the results of a simple, statistical assay that measures the G+C content sensitivity bias of gene expression experiments without the requirement of a duplicate experiment. We analyse five gene expression profiling methods: Affymetrix GeneChip, Long Serial Analysis of Gene Expression (LongSAGE), LongSAGELite, ‘Classic’ Massively Parallel Signature Sequencing (MPSS) and ‘Signature’ MPSS. We demonstrate the methods have systematic and random errors leading to a different G+C content sensitivity. The relationship between this experimental error and the G+C content of the probe set or tag that identifies each gene influences whether the gene is detected and, if detected, the level of gene expression measured. LongSAGE has the least bias, while Signature MPSS shows a strong bias to G+C rich tags and Affymetrix data show different bias depending on the data processing method (MAS 5.0, RMA or GC-RMA). The bias in the Affymetrix data primarily impacts genes expressed at lower levels. Despite the larger sampling of the MPSS library, SAGE identifies significantly more genes (60% more RefSeq genes in a single comparison). Oxford University Press 2006 2006-07-13 /pmc/articles/PMC1524917/ /pubmed/16840527 http://dx.doi.org/10.1093/nar/gkl404 Text en © 2006 The Author(s) |
spellingShingle | Methods Online Siddiqui, Asim S. Delaney, Allen D. Schnerch, Angelique Griffith, Obi L. Jones, Steven J. M. Marra, Marco A. Sequence biases in large scale gene expression profiling data |
title | Sequence biases in large scale gene expression profiling data |
title_full | Sequence biases in large scale gene expression profiling data |
title_fullStr | Sequence biases in large scale gene expression profiling data |
title_full_unstemmed | Sequence biases in large scale gene expression profiling data |
title_short | Sequence biases in large scale gene expression profiling data |
title_sort | sequence biases in large scale gene expression profiling data |
topic | Methods Online |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1524917/ https://www.ncbi.nlm.nih.gov/pubmed/16840527 http://dx.doi.org/10.1093/nar/gkl404 |
work_keys_str_mv | AT siddiquiasims sequencebiasesinlargescalegeneexpressionprofilingdata AT delaneyallend sequencebiasesinlargescalegeneexpressionprofilingdata AT schnerchangelique sequencebiasesinlargescalegeneexpressionprofilingdata AT griffithobil sequencebiasesinlargescalegeneexpressionprofilingdata AT jonesstevenjm sequencebiasesinlargescalegeneexpressionprofilingdata AT marramarcoa sequencebiasesinlargescalegeneexpressionprofilingdata |