Cargando…
Predicting protein subcellular locations using hierarchical ensemble of Bayesian classifiers based on Markov chains
BACKGROUND: The subcellular location of a protein is closely related to its function. It would be worthwhile to develop a method to predict the subcellular location for a given protein when only the amino acid sequence of the protein is known. Although many efforts have been made to predict subcellu...
Autores principales: | Bulashevska, Alla, Eils, Roland |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2006
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1525000/ https://www.ncbi.nlm.nih.gov/pubmed/16774677 http://dx.doi.org/10.1186/1471-2105-7-298 |
Ejemplares similares
-
Bayesian statistical modelling of human protein interaction network incorporating protein disorder information
por: Bulashevska, Svetlana, et al.
Publicado: (2010) -
LocateP: Genome-scale subcellular-location predictor for bacterial proteins
por: Zhou, Miaomiao, et al.
Publicado: (2008) -
An Ensemble Classifier for Eukaryotic Protein Subcellular Location Prediction Using Gene Ontology Categories and Amino Acid Hydrophobicity
por: Li, Liqi, et al.
Publicado: (2012) -
New Insights into the Genetic Regulation of Plasmodium Falciparum Obtained by Bayesian Modeling
por: Bulashevska, Svetlana, et al.
Publicado: (2007) -
Prediction of plant lncRNA by ensemble machine learning classifiers
por: Simopoulos, Caitlin M. A., et al.
Publicado: (2018)