Cargando…

A jumping profile Hidden Markov Model and applications to recombination sites in HIV and HCV genomes

BACKGROUND: Jumping alignments have recently been proposed as a strategy to search a given multiple sequence alignment A against a database. Instead of comparing a database sequence S to the multiple alignment or profile as a whole, S is compared and aligned to individual sequences from A. Within th...

Descripción completa

Detalles Bibliográficos
Autores principales: Schultz, Anne-Kathrin, Zhang, Ming, Leitner, Thomas, Kuiken, Carla, Korber, Bette, Morgenstern, Burkhard, Stanke, Mario
Formato: Texto
Lenguaje:English
Publicado: BioMed Central 2006
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1525204/
https://www.ncbi.nlm.nih.gov/pubmed/16716226
http://dx.doi.org/10.1186/1471-2105-7-265
Descripción
Sumario:BACKGROUND: Jumping alignments have recently been proposed as a strategy to search a given multiple sequence alignment A against a database. Instead of comparing a database sequence S to the multiple alignment or profile as a whole, S is compared and aligned to individual sequences from A. Within this alignment, S can jump between different sequences from A, so different parts of S can be aligned to different sequences from the input multiple alignment. This approach is particularly useful for dealing with recombination events. RESULTS: We developed a jumping profile Hidden Markov Model (jpHMM), a probabilistic generalization of the jumping-alignment approach. Given a partition of the aligned input sequence family into known sequence subtypes, our model can jump between states corresponding to these different subtypes, depending on which subtype is locally most similar to a database sequence. Jumps between different subtypes are indicative of intersubtype recombinations. We applied our method to a large set of genome sequences from human immunodeficiency virus (HIV) and hepatitis C virus (HCV) as well as to simulated recombined genome sequences. CONCLUSION: Our results demonstrate that jumps in our jumping profile HMM often correspond to recombination breakpoints; our approach can therefore be used to detect recombinations in genomic sequences. The recombination breakpoints identified by jpHMM were found to be significantly more accurate than breakpoints defined by traditional methods based on comparing single representative sequences.