Cargando…

A heparin binding synthetic peptide from human HIP / RPL29 fails to specifically differentiate between anticoagulantly active and inactive species of heparin

Despite extensive progress in determining structures within heparin and heparan sulfate (Hp/HS) and the discovery of numerous proteinaceous binding partners for Hp/HS so far; the only detailed characterization of a specific protein-glycosaminoglycan interaction is antithrombin III (ATIII) binding to...

Descripción completa

Detalles Bibliográficos
Autores principales: Hoke, David E, Carson, Daniel D, Höök, Magnus
Formato: Texto
Lenguaje:English
Publicado: BioMed Central 2003
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC152653/
https://www.ncbi.nlm.nih.gov/pubmed/12659638
http://dx.doi.org/10.1186/1477-5751-2-1
Descripción
Sumario:Despite extensive progress in determining structures within heparin and heparan sulfate (Hp/HS) and the discovery of numerous proteinaceous binding partners for Hp/HS so far; the only detailed characterization of a specific protein-glycosaminoglycan interaction is antithrombin III (ATIII) binding to a Hp pentasaccharide containing a unique 3-O-sulfated glucosamine residue. Previously, it was reported from our laboratories that a 16 amino acid synthetic peptide derived from the C-terminus of human HIP/RPL29 (HIP peptide-1) enriched for ATIII-dependent anticoagulant activity, presumably by specifically binding the ATIII pentasaccharide. Herein, we demonstrate that HIP peptide-1 cannot enrich ATIII-dependent anticoagulant activity from a starting pool of porcine intestinal mucosa Hp through a bio-specific interaction. However, a HIP peptide-1 column can be used to enrich for anticoagulantly active Hp from a diverse pool of glycosaminoglycans known as Hp byproducts by a mechanism of nonspecific charge interactions. Thus, HIP peptide-1 cannot recognize Hp via bio-specific interactions but binds glycosaminoglycans by non-specific charge interactions.