Cargando…

The traditional toxicologic paradigm is correct: dose influences mechanism.

Dose influences mechanism; and over a wide range of doses, one can envision that mechanism will change with changing dose. This basic concept in toxicology is juxtaposed with the biologic importance of maintaining normal DNA methylation status to provide the focus of this paper. The idea that altere...

Descripción completa

Detalles Bibliográficos
Autor principal: Goodman, J I
Formato: Texto
Lenguaje:English
Publicado: 1998
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1533292/
https://www.ncbi.nlm.nih.gov/pubmed/9539020
_version_ 1782129020929835008
author Goodman, J I
author_facet Goodman, J I
author_sort Goodman, J I
collection PubMed
description Dose influences mechanism; and over a wide range of doses, one can envision that mechanism will change with changing dose. This basic concept in toxicology is juxtaposed with the biologic importance of maintaining normal DNA methylation status to provide the focus of this paper. The idea that altered DNA methylation plays a variety of roles in carcinogenesis is compatible with three key features of this multistage process: clonal selection of abnormal cells in a progressive fashion, the reversibility of tumor promotion, and the multiplicity of tumor phenotypes. A relatively low capacity to maintain normal methylation status appears to explain, in part, the high propensity of the B6C3F1 mouse to develop liver tumors. This observation supports the view that a mouse liver tumor response is not an appropriate end point for human risk assessment. Additionally, it is suggested that altered DNA methylation can be viewed as a secondary mechanism underlying carcinogenesis. The knowledge that a chemical is acting by a mode of action involving a secondary mechanism can be used to support a safety factor or multiplicity of exposure approach to risk assessment.
format Text
id pubmed-1533292
institution National Center for Biotechnology Information
language English
publishDate 1998
record_format MEDLINE/PubMed
spelling pubmed-15332922006-08-08 The traditional toxicologic paradigm is correct: dose influences mechanism. Goodman, J I Environ Health Perspect Research Article Dose influences mechanism; and over a wide range of doses, one can envision that mechanism will change with changing dose. This basic concept in toxicology is juxtaposed with the biologic importance of maintaining normal DNA methylation status to provide the focus of this paper. The idea that altered DNA methylation plays a variety of roles in carcinogenesis is compatible with three key features of this multistage process: clonal selection of abnormal cells in a progressive fashion, the reversibility of tumor promotion, and the multiplicity of tumor phenotypes. A relatively low capacity to maintain normal methylation status appears to explain, in part, the high propensity of the B6C3F1 mouse to develop liver tumors. This observation supports the view that a mouse liver tumor response is not an appropriate end point for human risk assessment. Additionally, it is suggested that altered DNA methylation can be viewed as a secondary mechanism underlying carcinogenesis. The knowledge that a chemical is acting by a mode of action involving a secondary mechanism can be used to support a safety factor or multiplicity of exposure approach to risk assessment. 1998-02 /pmc/articles/PMC1533292/ /pubmed/9539020 Text en
spellingShingle Research Article
Goodman, J I
The traditional toxicologic paradigm is correct: dose influences mechanism.
title The traditional toxicologic paradigm is correct: dose influences mechanism.
title_full The traditional toxicologic paradigm is correct: dose influences mechanism.
title_fullStr The traditional toxicologic paradigm is correct: dose influences mechanism.
title_full_unstemmed The traditional toxicologic paradigm is correct: dose influences mechanism.
title_short The traditional toxicologic paradigm is correct: dose influences mechanism.
title_sort traditional toxicologic paradigm is correct: dose influences mechanism.
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1533292/
https://www.ncbi.nlm.nih.gov/pubmed/9539020
work_keys_str_mv AT goodmanji thetraditionaltoxicologicparadigmiscorrectdoseinfluencesmechanism
AT goodmanji traditionaltoxicologicparadigmiscorrectdoseinfluencesmechanism